scholarly journals Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209115 ◽  
Author(s):  
Erin M. Bonisteel ◽  
Brooke E. Turner ◽  
Cole D. Murphy ◽  
Jenna-Rose Melanson ◽  
Nicole M. Duff ◽  
...  
2016 ◽  
Vol 11 (9) ◽  
pp. e1218587 ◽  
Author(s):  
Jasmine Theis ◽  
Michael Schroda

2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


2021 ◽  
Author(s):  
Devon Birdseye ◽  
Laura A. de Boer ◽  
Hua Bai ◽  
Peng Zhou ◽  
Zhouxin Shen ◽  
...  

AbstractThe use of hybrids is widespread in agriculture, yet the molecular basis for hybrid vigor (heterosis) remains obscure. To identify molecular components that may contribute to the known higher photosynthetic capacity of maize hybrids, we generated paired datasets of the proteomes and transcriptomes from leaf tissues of maize hybrids and their inbred parents. Expression patterns in the hybrids were semi-dominant to overdominant for subunits of the digenomic protein complexes required for the light reactions of photosynthesis and for chloroplast protein synthesis; nuclear and plastid-encoded subunits were elevated similarly. These patterns were not mirrored in the nuclear transcriptomes. We compared growth to transcript and protein levels of multiple hybrids with varying levels of heterosis. Expression heterosis (hybrid/mid-parent expression levels) of chloroplast ribosomal proteins and of nuclear transcripts for the photosynthetic light reactions was positively correlated with plant height heterosis (hybrid/mid-parent plant height). Ethylene biosynthetic enzymes were expressed below mid-parent levels in the hybrids, and the ethylene biosynthesis mutant acs2/acs6 partially phenocopied the hybrid proteome, indicating that a reduction in ethylene biosynthesis may be upstream of the elevated expression of photosynthetic and ribosomal proteins in chloroplasts of hybrids.


2002 ◽  
Vol 173 (2) ◽  
pp. 285-296 ◽  
Author(s):  
C Boiti ◽  
D Zampini ◽  
G Guelfi ◽  
F Paolocci ◽  
M Zerani ◽  
...  

Total activity of nitric oxide (NO) synthase (NOS) and expression of both endothelial (eNOS) and inducible (iNOS) isoforms were examined in corpora lutea (CL) of rabbits across pseudopregnancy by quantitative RT-PCR analysis, Western blot and immunohistochemistry. CL were collected at early- (day 4), mid- (day 9) and late- (day 13) luteal phases of pseudopregnancy. The PCR product of rabbit luteal eNOS was cloned and its direct sequence exhibited 90% homology with those of other species. The steady-state mRNA levels encoding eNOS remained fairly constant throughout both early- and mid-luteal stages of pseudopregnancy but dropped almost to half (P</=0.05) by day 13. By contrast, luteal eNOS proteins increased 2-fold (P</=0.05) from the early- to late-luteal phase. Independently of CL age, iNOS mRNA was very poorly expressed while protein levels gradually declined from the early- to late-luteal stage. Intense eNOS-like immunoreactivity was detected in large luteal cells, while iNOS staining was targeted to a few, isolated cells, probably macrophages. Basal NOS activity was greater in day 4 CL than in both day 9 and day 13 CL. These data are the first to characterize in rabbit CL the temporal expression patterns of NOS isoforms across different luteal stages of pseudopregnancy and, collectively, suggest the existence of an expressional control for this constitutive isoform, which might have a physiological role in regulating CL function during development.


2002 ◽  
Vol 50 (11) ◽  
pp. 1525-1536 ◽  
Author(s):  
Melissa Verburg ◽  
Ingrid B. Renes ◽  
Danielle J.P.M. Van Nispen ◽  
Sacha Ferdinandusse ◽  
Marieke Jorritsma ◽  
...  

The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (−76%) and SGLT1 (−77%) and between I-FABP (−52%) and L-FABP (-45%). Decreases in GLUT5 (−53%), MUC2 (-43%), and TFF3 (−54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected.


2020 ◽  
Vol 319 (2) ◽  
pp. F178-F191 ◽  
Author(s):  
Olga Martinez-Arroyo ◽  
Ana Ortega ◽  
Javier Perez-Hernandez ◽  
Felipe J. Chaves ◽  
Josep Redon ◽  
...  

Kidney injury in hypertension and diabetes entails, among in other structures, damage in a key cell of the glomerular filtration barrier, the podocyte. Podocytes are polarized and highly differentiated cells in which vesicular transport, partly driven by Rab GTPases, is a relevant process. The aim of the present study was to analyze Rab GTPases of the Rab-Rabphilin system in human immortalized podocytes and the impact of high glucose and angiotensin II. Furthermore, alterations of the system in urine cell pellets from patients with hypertension and diabetes were studied. Apoptosis was analyzed in podocytes, and mRNA level quantification, Western blot analysis, and immunofluorescence were developed to quantify podocyte-specific molecules and Rab-Rabphilin components (Rab3A, Rab27A, and Rabphilin3A). Quantitative RT-PCR was performed on urinary cell pellet from patients. The results showed that differentiated cells had reduced protein levels of the Rab-rabphillin system compared with undifferentiated cells. After glucose overload and angiotensin II treatment, apoptosis was increased and podocyte-specific proteins were reduced. Rab3A and Rab27A protein levels were increased under glucose overload, and Rabphilin3A decreased. Furthermore, this system exhibited higher levels under stress conditions in a manner of angiotensin II dose and time treatment. Immunofluorescence imaging indicated different expression patterns of podocyte markers and Rab27A under treatments. Finally, Rab3A and Rab27A were increased in patient urine pellets and showed a direct relationship with albuminuria. Collectively, these results suggest that the Rab-Rabphilin system could be involved in the alterations observed in injured podocytes and that a mechanism may be activated to reduce damage through the vesicular transport enhancement directed by this system.


2019 ◽  
Vol 71 (3) ◽  
pp. 970-985 ◽  
Author(s):  
Hao Peng ◽  
Michael M Neff

Abstract Brassinosteroids (BRs) are a group of steroid hormones regulating plant growth and development. Since BRs do not undergo transport among plant tissues, their metabolism is tightly regulated by transcription factors (TFs) and feedback loops. BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1) are two BR-inactivating cytochrome P450s identified in Arabidopsis thaliana. We previously found that a TF ATAF2 (ANAC081) suppresses BAS1 and SOB7 expression by binding to the Evening Element (EE) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS) on their promoters. Both the EE and CBS are known binding targets of the circadian regulatory protein CCA1. Here, we confirm that CCA1 binds the EE and CBS motifs on BAS1 and SOB7 promoters, respectively. Elevated accumulations of BAS1 and SOB7 transcripts in the CCA1 null mutant cca1-1 indicate that CCA1 is a repressor of their expression. When compared with either cca1-1 or the ATAF2 null mutant ataf2-2, the cca1-1 ataf2-2 double mutant shows higher SOB7 transcript accumulations and a stronger BR-insensitive phenotype of hypocotyl elongation in white light. CCA1 interacts with ATAF2 at both DNA–protein and protein–protein levels. ATAF2, BAS1, and SOB7 are all circadian regulated with distinct expression patterns. These results demonstrate that CCA1 and ATAF2 differentially suppress BAS1- and SOB7-mediated BR inactivation.


Sign in / Sign up

Export Citation Format

Share Document