scholarly journals Non-consumptive effects stabilize herbivore control over multiple generations

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241870
Author(s):  
Kathryn S. Ingerslew ◽  
Deborah L. Finke

Understanding the factors that influence predator-prey dynamics requires an investigation of oscillations in predator and prey population sizes over time. However, empirical studies are often performed over one or fewer predator generations. This is particularly true for studies addressing the non-consumptive effects of predators on prey. In a previous study that lasted less than one predator generation, we demonstrated that two species of parasitoid wasps additively suppressed aphid populations through a combination of consumptive and non-consumptive effects. However, the non-consumptive effects of one wasp reduced the reproductive success of the other, suggesting that a longer-term experiment may have revealed antagonism between the wasps. The goal of our current study is to evaluate multi-generation consumptive and non-consumptive interactions between pea aphids (Acyrthosiphon pisum) and the wasps Aphidius ervi and Aphidius colemani. Aphidius ervi is a common natural enemy of pea aphids. Aphidius colemani is a non-consumptive enemy that does not consume pea aphids, but negatively affects pea aphid performance through behavioral disturbance. Large field cages were installed to monitor aphid abundance in response to the presence and absence of both species of wasp over four weeks (two parasitoid generations). We found that the non-consumptive enemy A. colemani initially controlled the pea aphid population, but control in the absence of parasitism was not sustainable over the long term. Aphidius ervi suppressed pea aphids through a combination of consumptive and non-consumptive effects. This suppression was more effective than that of A. colemani, but aphid abundance fluctuated over time. Suppression by A. ervi and A. colemani together was complementary, leading to the most effective and stable control of pea aphids. Therefore, promoting a diverse natural enemy community that contributes to pest control through consumptive and non-consumptive interactions may enhance the stability of herbivore population suppression over time.

2002 ◽  
Vol 92 (4) ◽  
pp. 351-357 ◽  
Author(s):  
D.A. Stacey ◽  
M.D.E. Fellowes

AbstractThe ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphidAcyrthosiphon pisumHarris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogenErynia neoaphidisRemaudière & Hennebert, with resistance increasing at higher temperatures (18 vs. 28°C). A temperature difference of 5°C (18 vs. 23°C) did not affect the ability ofA. pisumto resist attack by the parasitoidsAphidius erviHaliday andA. eadyiStarý, González & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergensGuerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21°C). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16°C), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions betweenAcyrthosiphon pisumand an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid–natural enemy interactions.


1986 ◽  
Vol 118 (6) ◽  
pp. 601-607 ◽  
Author(s):  
G.A. Maiteki ◽  
R.J. Lamb ◽  
S.T. Ali-Khan

AbstractPea aphids, Acyrthosiphon pisum (Harris), were sampled from 1980 to 1983 in field peas, Pisum sativum (L.), in Manitoba. Sweep and foliage samples were taken in commercial fields and plots. Aphids were found in late May or early June soon after the crop emerged, but populations were low throughout June. Populations increased in July, when the crop was flowering and producing pods, and peaked in the latter half of July or early August in 3 of the 4 years, when pods were maturing. Populations decreased rapidly after the peak, as the plants senesced. In 1980, a drought year, aphid densities were low and the populations peaked in the middle of August. From 1981 to 1983, densities exceeded the economic threshold in all commercial fields and all but one of the plots that were sampled.


1992 ◽  
Vol 124 (1) ◽  
pp. 87-95 ◽  
Author(s):  
K.L. Kouamé ◽  
M. Mackauer

AbstractThe influence of nutrient stress on growth, development, and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris), was investigated in the laboratory. We tested the hypothesis that species with a high reproductive investment have low resistance to starvation. Aphids in two groups were starved daily from birth for 4 h and 6 h, respectively, and compared with feeding counterparts reared on leaves of broad beans, Vicia faba L. Aphid wet weight increased as an exponential function of age in all groups. Starved aphids had lower adult weight and required longer from birth to parturition than feeding aphids. These effects increased with the length of daily starvation. The number of offspring produced was correlated with adult dry weight. Aphids were unable to compensate, or to compensate completely, for water and nutrient loss resulting from starvation. It is suggested that pea aphids allocate resources first to maintenance and then to reproduction when deprived of food.


1989 ◽  
Vol 24 (3) ◽  
pp. 344-347
Author(s):  
G. David Buntin ◽  
David J. Isenhour

The accuracy, precision and efficiency of stem-count and sweep-net techniques were compared for sampling the pea aphid, Acyrthosiphon pisum (Harris), in alfalfa. Density estimates by both techniques were highly correlated (r = 0.87). Both techniques were similar in sample precision and efficiency, but stem counts provided more accurate density estimates than the sweep net technique. The stem count technique is an accurate and efficient alternative to the sweep net for sampling pea aphids in alfalfa.


2016 ◽  
Vol 12 (10) ◽  
pp. 20160654 ◽  
Author(s):  
Mary E. Grantham ◽  
Chris J. Antonio ◽  
Brian R. O'Neil ◽  
Yi Xiang Zhan ◽  
Jennifer A. Brisson

Phenotypic plasticity and diversified bet hedging are strategies for coping with variable environments. Plasticity is favoured when an organism can predict future conditions using environmental cues, while bet hedging is favoured when predictive cues are not available. Theoretical analyses suggest that many organisms should use a mixture of both strategies, because environments often present both scenarios. Here, we examine if the pea aphid wing polyphenism, a well-known case of plasticity, is potentially a mixture of plasticity and bet hedging. In this polyphenism, asexual females produce more winged offspring in crowded conditions, and wingless offspring in uncrowded conditions. We find that pea aphids use plasticity to respond to crowding and we find considerable genetic variation for this response. We further show that individual aphids produce both winged and wingless offspring, consistent with the variability expected in a bet hedging trait. We conclude that the pea aphid wing polyphenism system is probably a mixture of plasticity and bet hedging. Our study adds to a limited list of empirical studies examining mixed strategy usage, and suggests that mixed strategies may be common in dispersal traits.


2007 ◽  
Vol 20 (1) ◽  
pp. 25-32 ◽  
Author(s):  
R. Libbrecht ◽  
D. M. Gwynn ◽  
M. D. E. Fellowes

1982 ◽  
Vol 60 (10) ◽  
pp. 2245-2252 ◽  
Author(s):  
J. M. Clegg ◽  
C. A. Barlow

Pea aphids respond most effectively to the threat of a predator by walking away or dropping from their host plant. Simulating threat by using vibration and alarm pheromone, both separately and together, we found no evidence that escape responses are heritable, nor that individual aphids have characteristic escape behaviours. On the contrary, the amount of alarm pheromone influenced responses: the more pheromone, the more likely an immediate and effective escape. Vibration preceding alarm pheromone greatly increased responsiveness to pheromone, and aphids were more responsive to pheromone after vibration when feeding on stems than when feeding on the undersides of leaves.


2002 ◽  
Vol 80 (12) ◽  
pp. 2131-2136 ◽  
Author(s):  
Edward B Mondor ◽  
Bernard D Roitberg

Aphids possess unique anatomical structures called cornicles through which a defensive secretion containing alarm pheromone is often emitted when a predator attacks an aphid. The levels of alarm pheromone in cornicle droplets from the pea aphid, Acyrthosiphon pisum (Harris), vary considerably during development; however, it is not clear how the length of the cornicle changes during ontogeny. The length of the cornicle relative to the lengths of other body structures may have profound effects on aphid defense and alarm signal diffusion. Using previously published morphological measurements of pea aphids and observing interactions between pea aphids and multicolored Asian ladybird beetles, Harmonia axyridis Pallas, it was observed that pea aphid cornicles elongate proportionally more than other body parts during the first four instars, when alarm-pheromone levels have peaked, than during the fifth (adult) instar, when pheromone levels decline. Pea aphids also are more likely to emit cornicle droplets and daub them onto a predator when the cornicles are undergoing such rapid growth. We suggest that because of a high risk of predation, rapid cornicle growth in juveniles has evolved both for individual defense and for the inclusive fitness benefits of alarm signaling.


2021 ◽  
Author(s):  
Samuel Alexander Purkiss ◽  
Mouhammad Shadi Khudr ◽  
Oscar Enrique Aguinaga ◽  
Reinmar Hager

Host-parasite interactions represent complex co-evolving systems in which genetic variation within a species can significantly affect selective pressure on traits in the other (for example via inter-species indirect genetic effects). While often viewed as a two-species interaction between host and parasite species, some systems are more complex due to the involvement of symbionts in the host that influence its immunity, enemies of the host, and the parasite through intraguild predation. However, it remains unclear what the joint effects of intraguild predation, defensive endosymbiosis, within-species genetic variation and indirect genetic effects on host immunity are. We have addressed this question in an important agricultural pest system, the pea aphid Acyrthosiphon pisum, which shows significant intraspecific variability in immunity to the parasitoid wasp Aphidius ervi due to immunity conferring endosymbiotic bacteria. In a complex experiment involving a quantitative genetic design of the parasitoid, two ecologically different aphid lineages and the aphid lion Chrysoperla carnea as an intraguild predator, we demonstrate that aphid immunity is affected by intraspecific genetic variation in the parasitoid and the aphid, as well as by associated differences in the defensive endosymbiont communities. Using 16s rRNA sequencing, we identified secondary symbionts that differed between the lineages. We further show that aphid lineages differ in their altruistic behaviour once parasitised whereby infested aphids move away from the clonal colony to facilitate predation. The outcome of these complex between-species interactions not only shape important host-parasite systems but have also implications for understanding the evolution of multitrophic interactions, and aphid biocontrol.


1999 ◽  
Vol 202 (19) ◽  
pp. 2639-2652 ◽  
Author(s):  
G. Febvay ◽  
Y. Rahbe ◽  
M. Rynkiewicz ◽  
J. Guillaud ◽  
G. Bonnot

The fate of sucrose, the major nutrient of an aphid's natural food, was explored by radiolabeling in the pea aphid Acyrthosiphon pisum. To investigate the influence of nitrogen quality of food on amino acid neosynthesis, pea aphids were reared on two artificial diets differing in their amino acid composition. The first (diet A) had an equilibrated amino acid balance, similar to that derived from analysis of aphid carcass, and the other (diet B) had an unbalanced amino acid composition similar to that of legume phloem sap. Aphids grown on either diet expired the same quantity of sucrose carbon as CO(2), amounting to 25–30 % of the ingested sucrose catabolized in oxidation pathways. On diet A, the aphids excreted through honeydew about twice as much sucrose carbon as on diet B (amounting to 12.6 % of the ingested sucrose for diet A and 8.4 % for diet B), while amounts of sucrose carbons incorporated into exuviae were almost identical (1.9 % of the ingested sucrose on diet A and 2.7 % on diet B). There was also no difference in the amounts of sucrose carbon incorporated into the aphid tissues, which represented close to 50 % of the ingested sucrose. Sucrose carbons in the aphid tissues were mainly incorporated into lipids and the quantities involved were the same in aphids reared on either diet. On diet B, we observed neosynthesis of all protein amino acids from sucrose carbons and, for the first time in an aphid, we directly demonstrated the synthesis of the essential amino acids leucine, valine and phenylalanine. Amino acid neosynthesis from sucrose was significantly higher on diet B (11.5 % of ingested sucrose carbons) than on diet A (5.4 %). On diet A, neosynthesis of most of the amino acids was significantly diminished, and synthesis of two of them (histidine and arginine) was completely suppressed. The origin of amino acids egested through honeydew was determined from the specific activity of the free amino acid pool in the aphid. Aphids are able to adjust to variation in dietary amino acids by independent egestion of each amino acid. While more than 80 % of excreted nitrogen was from food amino acids, different amino acids were excreted in honeydew of aphids reared on the two diets. The conversion yields of dietary sucrose into aphid amino acids determined in this study were combined with those obtained previously by studying the fate of amino acids in pea aphids reared on diet A. The origin of all the amino acid carbons in aphid tissues was thus computed, and the metabolic abilities of aphid are discussed from an adaptive point of view, with respect to their symbiotic status.


Sign in / Sign up

Export Citation Format

Share Document