scholarly journals Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243079
Author(s):  
Raquel Fernandes Araujo ◽  
Jeffrey Q. Chambers ◽  
Carlos Henrique Souza Celes ◽  
Helene C. Muller-Landau ◽  
Ana Paula Ferreira dos Santos ◽  
...  

Tree growth and survival differ strongly between canopy trees (those directly exposed to overhead light), and understory trees. However, the structural complexity of many tropical forests makes it difficult to determine canopy positions. The integration of remote sensing and ground-based data enables this determination and measurements of how canopy and understory trees differ in structure and dynamics. Here we analyzed 2 cm resolution RGB imagery collected by a Remotely Piloted Aircraft System (RPAS), also known as drone, together with two decades of bi-annual tree censuses for 2 ha of old growth forest in the Central Amazon. We delineated all crowns visible in the imagery and linked each crown to a tagged stem through field work. Canopy trees constituted 40% of the 1244 inventoried trees with diameter at breast height (DBH) > 10 cm, and accounted for ~70% of aboveground carbon stocks and wood productivity. The probability of being in the canopy increased logistically with tree diameter, passing through 50% at 23.5 cm DBH. Diameter growth was on average twice as large in canopy trees as in understory trees. Growth rates were unrelated to diameter in canopy trees and positively related to diameter in understory trees, consistent with the idea that light availability increases with diameter in the understory but not the canopy. The whole stand size distribution was best fit by a Weibull distribution, whereas the separate size distributions of understory trees or canopy trees > 25 cm DBH were equally well fit by exponential and Weibull distributions, consistent with mechanistic forest models. The identification and field mapping of crowns seen in a high resolution orthomosaic revealed new patterns in the structure and dynamics of trees of canopy vs. understory at this site, demonstrating the value of traditional tree censuses with drone remote sensing.

2002 ◽  
Vol 32 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Christine C Muth ◽  
F A Bazzaz

Although plants are sessile organisms, they can forage for resources and avoid neighbors by growing towards areas with high resource availability and reduced competition. Apparently because of this morphological flexibility, tree canopies are rarely positioned directly above their stem bases and are often displaced. To determine if contrasts in light availability lead to the development of canopy displacement, we investigated the responses of tree canopies to the heterogeneous light environments at the edges of six experimental gaps. Canopies and trunks of gap edge trees were mapped, and their spatial distributions were analyzed. We found that tree canopies were displaced towards gap centers. The magnitude and precision of canopy displacement were greater for subcanopy trees than for canopy trees. The magnitude and precision of canopy displacement were generally greater for earlier successional trees and hardwoods than for later successional trees and conifers. Canopy depth was significantly greater on gap-facing sides of trees than on forest-facing sides of trees. Thus, trees along gap edges foraged for light by occupying both horizontal and vertical gap space. This morphological flexibility has implications for individual plant success, as well as forest structure and dynamics.


Botany ◽  
2010 ◽  
Vol 88 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Michinari Matsushita ◽  
Nobuhiro Tomaru ◽  
Daisuke Hoshino ◽  
Naoyuki Nishimura ◽  
Shin-Ichi Yamamoto

We investigated the structure and dynamics of the multi-stemmed understory shrub Lindera triloba (Sieb. et Zucc.) Blume over 3 years in an old-growth coniferous forest, and quantitatively evaluated the factors affecting the ramet production, growth, and survival. Most genets sprouted continuously and exhibited multiple-stemmed structures with a few large and many small ramets. The skewed ramet-size distribution within genets resulted from the local crowding of neighboring trees, but not from the number of ramets within genets. This indicated that inter-plant competition is asymmetric (i.e., larger individuals outcompete one-sidedly smaller ones), but intra-plant competition (i.e., competition among ramets within genets) is symmetric (i.e., smaller ones also competitively affect larger ones). The local crowding of neighboring understory trees consistently negatively affected the ramet production, growth, and survival of L. triloba. Intra-genet crowding (i.e., crowding of ramets within genets) also negatively affected the ramet dynamics. On the other hand, the largest-ramet size within genets had positive relationships with the ramet dynamics, indicating that physiological integration within genets plays a role as supporting younger ramets. Based on our results, to fully understand genet persistence strategies in clonal shrub species, it is important to consider the effects of intra-genet crowding and modular integration, as well as plant-to-plant interaction.


2005 ◽  
Vol 7 ◽  
pp. 69-72 ◽  
Author(s):  
Tapani Tukiainen ◽  
Leif Thorning

Previous investigations by the Geological Survey of Denmark and Greenland (GEUS) and exploration companies have demonstrated that some of the kimberlites in West Greenland are diamond bearing, making the region an important target for diamond prospecting. High-resolution hyperspectral (HS) remote sensing data have been successfully used for the location of kimberlitic rocks, e.g. in Australia and Africa. However, its potential as a viable method for the mapping of kimberlite occurrences in Arctic glaciated terrain with high relief was previously unknown. In July–August 2002, GEUS conducted an airborne hyperspectral survey in central West Greenland (Fig. 1) using the commercially available HyMap hyperspectral scanner operated by HyVista Corporation, Australia. Data were processed in 2003, and in 2004 follow-up field work was carried out in the Kangerlussuaq region to test possible kimberlites indicated by the HS data (Fig. 1). The project wasfinanced by the Bureau of Minerals and Petroleum, Government of Greenland.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

The concept of exposome has received increasing discussion, including the recent Special Issue of Science –"Chemistry for Tomorrow's Earth,” about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


Author(s):  
John L. Schroeder

This article reviews the techniques and approaches historically employed to measure non-synoptic wind storms. While most of these efforts have originated from the atmospheric science community, the focus of this article relates to meeting the requirements of the engineering community. While the recognition of the importance of these non-synoptic wind system events is increasing, their engineering-relevant characteristics are still largely unknown. While gaps in knowledge concerning the engineering-relevant aspects of non-synoptic wind systems are plentiful, focused application of high-resolution research instrumentation offers hope to remove many of these unknowns. Future engineering-oriented measurement campaigns will likely make use of both traditional anemometry and remote sensing technologies to document the characteristics of non-synoptic wind systems.


Sign in / Sign up

Export Citation Format

Share Document