scholarly journals Identification and characterization of a novel multi-stress responsive gene in Arabidopsis

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244030
Author(s):  
Faiza Tawab ◽  
Iqbal Munir ◽  
Zeeshan Nasim ◽  
Mohammad Sayyar Khan ◽  
Saleha Tawab ◽  
...  

Abiotic stresses especially salinity, drought and high temperature result in considerable reduction of crop productivity. In this study, we identified AT4G18280 annotated as a glycine-rich cell wall protein-like (hereafter refer to as GRPL1) protein as a potential multistress-responsive gene. Analysis of public transcriptome data and GUS assay of pGRPL1::GUS showed a strong induction of GRPL1 under drought, salinity and heat stresses. Transgenic plants overexpressing GRPL1-3HA showed significantly higher germination, root elongation and survival rate under salt stress. Moreover, the 35S::GRPL1-3HA transgenic lines also showed higher survival rates under drought and heat stresses. GRPL1 showed similar expression patterns with Abscisic acid (ABA)-pathway genes under different growth and stress conditions, suggesting a possibility that GRPL1 might act in the ABA pathway that is further supported by the inability of ABA-deficient mutant (aba2-1) to induce GRPL1 under drought stress. Taken together, our data presents GRPL1 as a potential multi-stress responsive gene working downstream of ABA.

2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.


2021 ◽  
Vol 72 (8) ◽  
pp. 3200-3218
Author(s):  
Gianfranco Diretto ◽  
Alberto José López-Jiménez ◽  
Oussama Ahrazem ◽  
Sarah Frusciante ◽  
Jingyuan Song ◽  
...  

Abstract Crocetin biosynthesis in Buddleja davidii flowers proceeds through a zeaxanthin cleavage pathway catalyzed by two carotenoid cleavage dioxygenases (BdCCD4.1 and BdCCD4.3), followed by oxidation and glucosylation reactions that lead to the production of crocins. We isolated and analyzed the expression of 12 genes from the carotenoid pathway in B. davidii flowers and identified four candidate genes involved in the biosynthesis of crocins (BdALDH, BdUGT74BC1, BdUGT74BC2, and BdUGT94AA3). In addition, we characterized the profile of crocins and their carotenoid precursors, following their accumulation during flower development. Overall, seven different crocins, crocetin, and picrocrocin were identified in this study. The accumulation of these apocarotenoids parallels tissue development, reaching the highest concentration when the flower is fully open. Notably, the pathway was regulated mainly at the transcript level, with expression patterns of a large group of carotenoid precursor and apocarotenoid genes (BdPSY2, BdPDS2, BdZDS, BdLCY2, BdBCH, BdALDH, and BdUGT Genes) mimicking the accumulation of crocins. Finally, we used comparative correlation network analysis to study how the synthesis of these valuable apocarotenoids diverges among B. davidii, Gardenia jasminoides, and Crocus sativus, highlighting distinctive differences which could be the basis of the differential accumulation of crocins in the three species.


2015 ◽  
Vol 112 (32) ◽  
pp. 9920-9925 ◽  
Author(s):  
Owen Marecic ◽  
Ruth Tevlin ◽  
Adrian McArdle ◽  
Eun Young Seo ◽  
Taylor Wearda ◽  
...  

The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.


2019 ◽  
Vol 20 (20) ◽  
pp. 5121 ◽  
Author(s):  
Zhongyi Zhao ◽  
Tao Li ◽  
Xiuling Peng ◽  
Keqiang Wu ◽  
Songguang Yang

As the subunits of the SWI/SNF (mating-type switching (SWI) and sucrose nonfermenting (SNF)) chromatin-remodeling complexes (CRCs), Swi3-like proteins are crucial to chromatin remodeling in yeast and human. Growing evidence indicate that AtSWI3s are also essential for development and response to hormones in Arabidopsis. Nevertheless, the biological functions of Swi3-like proteins in tomato (Solanum lycopersicum) have not been investigated. Here we identified four Swi3-like proteins from tomato, namely SlSWI3A, SlSWI3B, SlSWI3C, and SlSWI3D. Subcellular localization analysis revealed that all SlSWI3s are localized in the nucleus. The expression patterns showed that all SlSWI3s are ubiquitously expressed in all tissues and organs, and SlSWI3A and SlSWI3B can be induced by cold treatment. In addition, we found that SlSWI3B can form homodimers with itself and heterodimers with SlSWI3A and SlSWI3C. SlSWI3B can also interact with SlRIN and SlCHR8, two proteins involved in tomato reproductive development. Overexpression of SlSWI3C increased the leaf size in transgenic Arabidopsis with increased expression of GROWTH REGULATING FACTORs, such as GRF3, GRF5, and GRF6. Taken together, our results indicate that SlSWI3s may play important roles in tomato growth and development.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1385
Author(s):  
Jiujun Du ◽  
Lei Zhang ◽  
Xiaolan Ge ◽  
Xiaodong Xiang ◽  
Demei Cao ◽  
...  

Light is an important environmental factor for plant growth, and in higher plants, phytochrome A (phyA) is the predominant far-red photoreceptor, involved in various photoresponses. The FAR1/FHY3 transcription factor family, derived from transposases, is able to regulate plant development in response to multiple photosensitizers phytochrome. In total, 51 PtrFRSs were identified in the poplar genome, and were divided into 4 subfamilies. Among them, 47 PtrFRSs are located on 17 chromosomes. Upstream cis-acting elements of the PtrFRS genes were classified into three categories: growth and metabolism, stress and hormone, and the hormone and stress categories contained most of the cis-acting elements. Analysis of the regulatory networks and expression patterns showed that most PtrFRSs responded to changes in light intensity and were involved in the regulation of phytochromes. In this study, 51 PtrFRSs were identified and comprehensively bioinformatically analyzed, and preliminary functional analysis and prediction of PtrFRSs was carried out.


Sign in / Sign up

Export Citation Format

Share Document