scholarly journals A new 3D finite element-based approach for computing cell surface tractions assuming nonlinear conditions

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249018
Author(s):  
Silvia Hervas-Raluy ◽  
Maria Jose Gomez-Benito ◽  
Carlos Borau-Zamora ◽  
Mar Cóndor ◽  
Jose Manuel Garcia-Aznar

Advances in methods for determining the forces exerted by cells while they migrate are essential for attempting to understand important pathological processes, such as cancer or angiogenesis, among others. Precise data from three-dimensional conditions are both difficult to obtain and manipulate. For this purpose, it is critical to develop workflows in which the experiments are closely linked to the subsequent computational postprocessing. The work presented here starts from a traction force microscopy (TFM) experiment carried out on microfluidic chips, and this experiment is automatically joined to an inverse problem solver that allows us to extract the traction forces exerted by the cell from the displacements of fluorescent beads embedded in the extracellular matrix (ECM). Therefore, both the reconstruction of the cell geometry and the recovery of the ECM displacements are used to generate the inputs for the resolution of the inverse problem. The inverse problem is solved iteratively by using the finite element method under the hypothesis of finite deformations and nonlinear material formulation. Finally, after mathematical postprocessing is performed, the traction forces on the surface of the cell in the undeformed configuration are obtained. Therefore, in this work, we demonstrate the robustness of our computational-based methodology by testing it under different conditions in an extreme theoretical load problem and then by applying it to a real case based on experimental results. In summary, we have developed a new procedure that adds value to existing methodologies for solving inverse problems in 3D, mainly by allowing for large deformations and not being restricted to any particular material formulation. In addition, it automatically bridges the gap between experimental images and mechanical computations.

2011 ◽  
Vol 70 ◽  
pp. 21-27 ◽  
Author(s):  
Jacob Notbohm ◽  
Jin Hong Kim ◽  
Anand Asthagiri ◽  
Guruswami Ravichandran

With increasing understanding of the important role mechanics plays in cell behavior, the experimental technique of traction force microscopy has grown in popularity over the past decade. While researchers have assumed that cells on a flat substrate apply tractions in only two dimensions, a finite element simulation is discussed here that demonstrates how cells apply tractions in all three dimensions. Three dimensional traction force microscopy is then used to experimentally confirm the finite element results. Finally, the implications that the traction distributions of cell clusters have on the study of inhibition of proliferation due to cell contact and scattering of cells in a cluster are discussed.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e69850 ◽  
Author(s):  
Juan C. del Álamo ◽  
Ruedi Meili ◽  
Begoña Álvarez-González ◽  
Baldomero Alonso-Latorre ◽  
Effie Bastounis ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lauren Hazlett ◽  
Alexander K. Landauer ◽  
Mohak Patel ◽  
Hadley A. Witt ◽  
Jin Yang ◽  
...  

Abstract We introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images. Using an open-source finite element (FE) based solver, we then compute the 3D full-field stress and strain and surface traction fields. We demonstrate this technique by measuring tractions generated by both single human neutrophils and multicellular monolayers of Madin–Darby canine kidney cells, highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, this represents a new, easily accessible method for calculating fully three-dimensional displacement and 3D surface tractions at high spatial frequency from epifluorescence images. We released and support the complete technique as a free and open-source code package.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christoph Mark ◽  
Thomas J Grundy ◽  
Pamela L Strissel ◽  
David Böhringer ◽  
Nadine Grummel ◽  
...  

We describe a method for quantifying the contractile forces that tumor spheroids collectively exert on highly nonlinear three-dimensional collagen networks. While three-dimensional traction force microscopy for single cells in a nonlinear matrix is computationally complex due to the variable cell shape, here we exploit the spherical symmetry of tumor spheroids to derive a scale-invariant relationship between spheroid contractility and the surrounding matrix deformations. This relationship allows us to directly translate the magnitude of matrix deformations to the total contractility of arbitrarily sized spheroids. We show that our method is accurate up to strains of 50% and remains valid even for irregularly shaped tissue samples when considering only the deformations in the far field. Finally, we demonstrate that collective forces of tumor spheroids reflect the contractility of individual cells for up to 1 hr after seeding, while collective forces on longer timescales are guided by mechanical feedback from the extracellular matrix.


2012 ◽  
Vol 4 ◽  
pp. 144-150 ◽  
Author(s):  
J. Notbohm ◽  
J.-H. Kim ◽  
C. Franck ◽  
S. Maskarinec ◽  
D. Tirrell ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17833 ◽  
Author(s):  
Christian Franck ◽  
Stacey A. Maskarinec ◽  
David A. Tirrell ◽  
Guruswami Ravichandran

2021 ◽  
Author(s):  
Kevin M Beussman ◽  
Molly Y Mollica ◽  
Andrea Leonard ◽  
Jeffrey Miles ◽  
John Hocter ◽  
...  

Measuring the traction forces produced by cells provides insight into their behavior and physiological function. Here, we developed a technique (dubbed 'black dots') that microcontact prints a fluorescent micropattern onto a flexible substrate to measure cellular traction forces without constraining cell shape or needing to detach the cells. To demonstrate our technique, we assessed human platelets, which can generate a large range of forces within a population. We find platelets that exert more force have more spread area, are more circular, and have more uniformly distributed F-actin filaments. As a result of the high yield of data obtainable by this technique, we were able to evaluate multivariate mixed effects models with interaction terms and conduct a clustering analysis to identify clusters within our data. These statistical techniques demonstrated a complex relationship between spread area, circularity, F-actin dispersion, and platelet force, including cooperative effects that significantly associate with platelet traction forces.


2018 ◽  
Author(s):  
Brian P. Griffin ◽  
Christopher J. Largaespada ◽  
Nicole A. Rinaldi ◽  
Christopher A. Lemmon

AbstractMany methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that quantifies cellular forces on a homogeneous surface that is stable, easily manufactured, and can quantify forces without need for cellular removal.


1974 ◽  
Vol 96 (4) ◽  
pp. 251-257 ◽  
Author(s):  
T. Belytschko ◽  
A. H. Marchertas

A finite-element procedure for transient analysis of plates and shells in three-dimensional space, and applicable to large displacements and nonlinear material properties, is described. This procedure employs a convected coordinate formulation enabling the use of simple strain-nodal displacement and nodal force-stress relations. The plate/shell element considers linear in-plane displacements and cubic transverse displacements. The orientation of lumped masses is described by unit vectors so that arbitrarily large rotations can be treated. Discretized equations of motion are integrated explicitly in time with a difference formula. Membrane artificial viscosity is utilized to stabilize occasional oscillations. The computational efficiency of the procedure is quite good: one element-time step takes 2 msec on an IBM 360/195 computer. Comparison of results with experimental data of impulsively loaded plates shows good agreement. The program was applied to a hexagonal fuel subassembly loaded internally. Various results are presented on its response and it is shown that, for that type of loading, two-dimensional cross-sectional models may be adequate.


Sign in / Sign up

Export Citation Format

Share Document