scholarly journals A Focal Adhesion Filament Cross-correlation Kit for fast, automated segmentation and correlation of focal adhesions and actin stress fibers in cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0250749
Author(s):  
Lara Hauke ◽  
Shwetha Narasimhan ◽  
Andreas Primeßnig ◽  
Irina Kaverina ◽  
Florian Rehfeldt

Focal adhesions (FAs) and associated actin stress fibers (SFs) form a complex mechanical system that mediates bidirectional interactions between cells and their environment. This linked network is essential for mechanosensing, force production and force transduction, thus directly governing cellular processes like polarization, migration and extracellular matrix remodeling. We introduce a tool for fast and robust coupled analysis of both FAs and SFs named the Focal Adhesion Filament Cross-correlation Kit (FAFCK). Our software can detect and record location, axes lengths, area, orientation, and aspect ratio of focal adhesion structures as well as the location, length, width and orientation of actin stress fibers. This enables users to automate analysis of the correlation of FAs and SFs and study the stress fiber system in a higher degree, pivotal to accurately evaluate transmission of mechanocellular forces between a cell and its surroundings. The FAFCK is particularly suited for unbiased and systematic quantitative analysis of FAs and SFs necessary for novel approaches of traction force microscopy that uses the additional data from the cellular side to calculate the stress distribution in the substrate. For validation and comparison with other tools, we provide datasets of cells of varying quality that are labelled by a human expert. Datasets and FAFCK are freely available as open source under the GNU General Public License.

2021 ◽  
Author(s):  
Lara Hauke ◽  
Shwetha Narasimhan ◽  
Andreas Primeßnig ◽  
Irina Kaverina ◽  
Florian Rehfeldt

AbstractFocal adhesions (FAs) and associated actin stress fibers (SFs) form a complex mechanical system that mediates bidirectional interactions between cells and their environment. This linked network is essential for mechanosensing, force production and force transduction, thus directly governing cellular processes like polarization, migration and extracellular matrix remodeling. We introduce a tool for fast and robust coupled analysis of both FAs and SFs named the Focal Adhesion Filament Cross-correlation Kit (FAFCK). Our software can detect and record location, axes lengths, area, orientation, and aspect ratio of focal adhesion structures as well as the location, length, width and orientation of actin stress fibers. This enables users to automate analysis of the correlation of FAs and SFs and study the stress fiber system in a higher degree, pivotal to accurately evaluate transmission of mechanocellular forces between a cell and its surroundings. The FAFCK is particularly suited for unbiased and systematic quantitative analysis of FAs and SFs necessary for novel approaches of traction force microscopy that uses the additional data from the cellular side to calculate the stress distribution in the substrate. For validation and comparison with other tools, we provide datasets of cells of varying quality that are labelled by a human expert. Datasets and FAFCK are freely available as open source under the GNU General Public License.Author summaryOur novel Focal Adhesion Filament Cross-correlation Kit (FAFCK) allows for fast, reliable, unbiased, and systematic detection of focal adhesions and actin stress fibers in cells and their mutual correlation. Detailed analysis of these structures which are both key elements in mechano-sensing and force transduction will help tremendously to improve quantitative analysis of mechanocellular experiments, key to understanding the complex interplay between cells and the extracellular matrix. In particular, sophisticated analysis methods such as model-based traction force microscopy will benefit from correlating the detailed datasets of stress fibers and focal adhesions.


2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


Author(s):  
Roland Kaunas

Cyclic stretching of endothelial cells (ECs), such as occurs in arteries during the cardiac cycle, induces ECs and their actin stress fibers to orient perpendicular to the direction of maximum stretch. This perpendicular alignment response is strengthened by increasing the magnitudes of stretch and cell contractility (1). The actin cytoskeleton is a dynamic structure that regulates cell shape changes and mechanical properties. It has been shown that actin stress fibers are ‘prestretched’ under normal, non-perturbed, conditions (2), consistent with the ideas of ‘prestress’ that have motivated tensegrity cell models (3). It has also been shown that ‘tractional forces’ generated by cells at focal adhesions tend to increase proportionately with increasing focal adhesion area, thus suggesting that cells tend to maintain constant the stress borne by a focal adhesion (4). By implication, this suggests that cells try to maintain constant the stress in actin stress fibers. Thus, it seems that cells reorganize or turnover cytoskeletal proteins and adhesion complexes so as to maintain constant a preferred mechanical state. Mizutani et al. (5) referred to this as cellular tensional homeostasis, although they did not suggest a model or theory to account for this dynamic process.


1998 ◽  
Vol 143 (7) ◽  
pp. 1981-1995 ◽  
Author(s):  
J.C. Norman ◽  
D. Jones ◽  
S.T. Barry ◽  
M.R. Holt ◽  
S. Cockcroft ◽  
...  

Focal adhesion assembly and actin stress fiber formation were studied in serum-starved Swiss 3T3 fibroblasts permeabilized with streptolysin-O. Permeabilization in the presence of GTPγS stimulated rho-dependent formation of stress fibers, and the redistribution of vinculin and paxillin from a perinuclear location to focal adhesions. Addition of GTPγS at 8 min after permeabilization still induced paxillin recruitment to focal adhesion–like structures at the ends of stress fibers, but vinculin remained in the perinuclear region, indicating that the distributions of these two proteins are regulated by different mechanisms. Paxillin recruitment was largely rho-independent, but could be evoked using constitutively active Q71L ADP-ribosylation factor (ARF1), and blocked by NH2-terminally truncated Δ17ARF1. Moreover, leakage of endogenous ARF from cells was coincident with loss of GTPγS- induced redistribution of paxillin to focal adhesions, and the response was recovered by addition of ARF1. The ability of ARF1 to regulate paxillin recruitment to focal adhesions was confirmed by microinjection of Q71LARF1 and Δ17ARF1 into intact cells. Interestingly, these experiments showed that V14RhoA- induced assembly of actin stress fibers was potentiated by Q71LARF1. We conclude that rho and ARF1 activate complimentary pathways that together lead to the formation of paxillin-rich focal adhesions at the ends of prominent actin stress fibers.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Erik S. Linklater ◽  
Emily D. Duncan ◽  
Ke-Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


2015 ◽  
Vol 308 (10) ◽  
pp. H1205-H1214 ◽  
Author(s):  
Pu Zhang ◽  
Shan Feng ◽  
Huiyuan Bai ◽  
Panying Zeng ◽  
Feng Chen ◽  
...  

Environmental hazardous material polychlorinated biphenyl (PCB) exposure is associated with vascular endothelial dysfunction, which may increase the risk of cardiovascular diseases and cancer metastasis. Our previous studies illustrated the cytotoxic, antiproliferative, and genotoxic effects of a synthetic, quinone-type, highly reactive metabolite of PCB, 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (PCB29-pQ). Here, we used it as the model compound to investigate its effects on vascular endothelial integrity and permeability. We demonstrated that noncytotoxic doses of PCB29-pQ induced vascular endothelial (VE)-cadherin junction disassembly by increasing the phosphorylation of VE-cadherin at Y658. We also found that focal adhesion assembly was required for PCB29-pQ-induced junction breakdown. Focal adhesion site-associated actin stress fibers may serve as holding points for cytoskeletal tension to regulate the cellular contractility. PCB29-pQ exposure promoted the association of actin stress fibers with paxillin-containing focal adhesion sites and enlarged the size/number of focal adhesions. In addition, PCB29-pQ treatment induced phosphorylation of paxillin at Y118. By using pharmacological inhibition, we further demonstrated that p38 activation was necessary for paxillin phosphorylation, whereas extracellular signal-regulated kinases-1/2 activation regulated VE-cadherin phosphorylation. In conclusion, these results indicated that PCB29-pQ stimulates endothelial hyperpermeability by mediating VE-cadherin disassembly, junction breakdown, and focal adhesion formation. Intervention strategies targeting focal adhesion and MAPK signaling could be used as therapeutic approaches for preventing adverse cardiovascular health effects induced by environmental toxicants such as PCBs.


2007 ◽  
Vol 293 (5) ◽  
pp. C1616-C1626 ◽  
Author(s):  
Rosalind E. Mott ◽  
Brian P. Helmke

Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.


2002 ◽  
Vol 227 (6) ◽  
pp. 412-424 ◽  
Author(s):  
Imre L. Szabó ◽  
Rama Pai ◽  
Michael K. Jones ◽  
George R. Ehring ◽  
Hirofumi Kawanaka ◽  
...  

Repair of superficial gastric mucosal injury is accomplished by the process of restitution—migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.


2001 ◽  
Vol 280 (6) ◽  
pp. C1669-C1679 ◽  
Author(s):  
Kazuo Katoh ◽  
Yumiko Kano ◽  
Mutsuki Amano ◽  
Kozo Kaibuchi ◽  
Keigi Fujiwara

To understand the roles of Rho-kinase and myosin light chain kinase (MLCK) for the contraction and organization of stress fibers, we treated cultured human foreskin fibroblasts with several MLCK, Rho-kinase, or calmodulin inhibitors and analyzed F-actin organization in the cells. Some cells were transfected with green fluorescent protein (GFP)-labeled actin, and the effects of inhibitors were also studied in these living cells. The Rho-kinase inhibitors Y-27632 and HA1077 caused disassembly of stress fibers and focal adhesions in the central portion of the cell within 1 h. However, stress fibers located in the periphery of the cell were not severely affected by the Rho-kinase inhibitors. When these cells were washed with fresh medium, the central stress fibers and focal adhesions gradually reformed, and within 3 h the cells were completely recovered. ML-7 and KT5926 are specific MLCK inhibitors and caused disruption and/or shortening of peripheral stress fibers, leaving the central fibers relatively intact even though their number was reduced. The calmodulin inhibitors W-5 and W-7 gave essentially the same results as the MLCK inhibitors. The MLCK and calmodulin inhibitors, but not the Rho-kinase inhibitors, caused cells to lose the spread morphology, indicating that the peripheral fibers play a major role in keeping the flattened state of the cell. When stress fiber models were reactivated, the peripheral fibers contracted before the central fibers. Thus our study shows that there are at least two different stress fiber systems in the cell. The central stress fiber system is dependent more on the activity of Rho-kinase than on that of MLCK, while the peripheral stress fiber system depends on MLCK.


2012 ◽  
Vol 196 (3) ◽  
pp. 363-374 ◽  
Author(s):  
Patrick W. Oakes ◽  
Yvonne Beckham ◽  
Jonathan Stricker ◽  
Margaret L. Gardel

Focal adhesion composition and size are modulated in a myosin II–dependent maturation process that controls adhesion, migration, and matrix remodeling. As myosin II activity drives stress fiber assembly and enhanced tension at adhesions simultaneously, the extent to which adhesion maturation is driven by tension or altered actin architecture is unknown. We show that perturbations to formin and α-actinin 1 activity selectively inhibited stress fiber assembly at adhesions but retained a contractile lamella that generated large tension on adhesions. Despite relatively unperturbed adhesion dynamics and force transmission, impaired stress fiber assembly impeded focal adhesion compositional maturation and fibronectin remodeling. Finally, we show that compositional maturation of focal adhesions could occur even when myosin II–dependent cellular tension was reduced by 80%. We propose that stress fiber assembly at the adhesion site serves as a structural template that facilitates adhesion maturation over a wide range of tensions. This work identifies the essential role of lamellar actin architecture in adhesion maturation.


Sign in / Sign up

Export Citation Format

Share Document