scholarly journals Genome analysis of cotton leafroll dwarf virus reveals variability in the silencing suppressor protein, genotypes and genomic recombinants in the USA

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0252523
Author(s):  
Afsha Tabassum ◽  
Sudeep Bag ◽  
Nelson D. Suassuna ◽  
Kassie N. Conner ◽  
Peng Chee ◽  
...  

Cotton leafroll dwarf virus (CLRDV) is an emerging virus in cotton production in Georgia and several other Southeastern states in the USA. To better understand the genetic diversity of the virus population, the near complete genome sequences of six isolates from Georgia and one from Alabama were determined. The isolates sequenced were 5,866 nucleotides with seven open reading frames (ORFs). The isolates from Georgia were >94% identical with other isolates from the USA and South America. In the silencing suppressor protein (P0), at amino acid position 72, the isolates from Georgia and Alabama had a valine (V), similar to resistant-breaking ‘atypical’ genotypes in South America, while the Texas isolate had isoleucine (I), similar to the more aggressive ‘typical’ genotypes of CLRDV. At position 120, arginine (R) is unique to Georgia and China isolates, but absent in Alabama, Texas and South American isolates. Ten potential recombinant events were detected in the isolates sequenced. An increased understanding of CLRDV population structure and genetic diversity will help develop management strategies for CLRDV in the USA cotton belt.

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2230
Author(s):  
Roberto Ramos-Sobrinho ◽  
Raphael O. Adegbola ◽  
Kathy Lawrence ◽  
Drew W. Schrimsher ◽  
Thomas Isakeit ◽  
...  

Cotton leafroll dwarf virus (CLRDV) was first reported in the United States (US) in 2017 from cotton plants in Alabama (AL) and has become widespread in cotton-growing states of the southern US. To investigate the genomic variability among CLRDV isolates in the US, complete genomes of the virus were obtained from infected cotton plants displaying mild to severe symptoms from AL, Florida, and Texas. Eight CLRDV genomes were determined, ranging in size from 5865 to 5867 bp, and shared highest nucleotide identity with other CLRDV isolates in the US, at 95.9–98.7%. Open reading frame (ORF) 0, encoding the P0 silencing suppressor, was the most variable gene, sharing 88.5–99.6% and 81.2–89.3% amino acid similarity with CLRDV isolates reported in cotton growing states in the US and in Argentina and Brazil in South America, respectively. Based on Bayesian analysis, the complete CLRDV genomes from cotton in the US formed a monophyletic group comprising three relatively divergent sister clades, whereas CLRDV genotypes from South America clustered as closely related sister-groups, separate from US isolates, patterns reminiscent of phylogeographical structuring. The CLRDV isolates exhibited a complex pattern of recombination, with most breakpoints evident in ORFs 2 and 3, and ORF5. Despite extensive nucleotide diversity among all available CLRDV genomes, purifying selection (dN/dS < 1) was implicated as the primary selective force acting on viral protein evolution.


Author(s):  

Abstract A new distribution map is provided for Cotton leafroll dwarf virus. Luteoviridae: Polerovirus. Hosts: cotton (Gossypium spp.), chickpea (Cicer arietinum). Information is given on the geographical distribution in Asia (East Timor, India, Maharashtra, Thailand, Uzbekistan), Africa (Central African Republic, Sudan), North America (USA, Alabama, Georgia, Mississippi, North Carolina, Texas), South America (Argentina, Brazil, Goias, Mato Grosso, Minas Gerais, Parana, Sao Paulo).


2021 ◽  
Vol 12 ◽  
Author(s):  
Ved Parkash ◽  
Divya Bhanu Sharma ◽  
John Snider ◽  
Sudeep Bag ◽  
Phillip Roberts ◽  
...  

Cotton leafroll dwarf disease (CLRDD) caused by cotton leafroll dwarf virus (CLRDV) is an emerging threat to cotton production in the United States. The disease was first reported in Alabama in 2017 and subsequently has been reported in 10 other cotton producing states in the United States, including Georgia. A field study was conducted at field sites near Tifton, Georgia in 2019 and 2020 to evaluate leaf gas exchange, chlorophyll fluorescence, and leaf temperature responses for a symptomatic cultivar (diseased plants observed at regular frequency) at multiple stages of disease progression and for asymptomatic cultivars (0% disease incidence observed). Disease-induced reductions in net photosynthetic rate (An, decreased by 63–101%), stomatal conductance (gs, decreased by 65–99%), and efficiency of the thylakoid reactions (32–92% decline in primary photochemistry) were observed, whereas leaf temperature significantly increased by 0.5–3.8°C at advanced stages of the disease. Net photosynthesis was substantially more sensitive to disease-induced declines in gs than the thylakoid reactions. Symptomatic plants with more advanced disease stages remained stunted throughout the growing season, and yield was reduced by 99% by CLRDD due to reductions in boll number per plant and declines in boll mass resulting from fewer seeds per boll. Asymptomatic cultivars exhibited more conservative gas exchange responses than apparently healthy plants of the symptomatic cultivar but were less productive. Overall, it is concluded that CLRDV limits stomatal conductance and photosynthetic activity of individual leaves, causing substantial declines in productivity for individual plants. Future studies should evaluate the physiological contributors to genotypic variation in disease tolerance under controlled conditions.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Edith Khamonya Avedi ◽  
Adedapo Olutola Adediji ◽  
Dora Chao Kilalo ◽  
Florence Mmogi Olubayo ◽  
Isaac Macharia ◽  
...  

Abstract Background Tomato production is threatened worldwide by the occurrence of begomoviruses which are associated with tomato leaf curl diseases. There is little information on the molecular properties of tomato begomoviruses in Kenya, hence we investigated the population and genetic diversity of begomoviruses associated with tomato leaf curl in Kenya. Methods Tomato leaf samples with virus-like symptoms were obtained from farmers’ field across the country in 2018 and Illumina sequencing undertaken to determine the genetic diversity of associated begomoviruses. Additionally, the occurrence of selection pressure and recombinant isolates within the population were also evaluated. Results Twelve complete begomovirus genomes were obtained from our samples with an average coverage of 99.9%. The sequences showed 95.7–99.7% identity among each other and 95.9–98.9% similarities with a Tomato leaf curl virus Arusha virus (ToLCArV) isolate from Tanzania. Analysis of amino acid sequences showed the highest identities in the regions coding for the coat protein gene (98.5–100%) within the isolates, and 97.1–100% identity with the C4 gene of ToLCArV. Phylogenetic algorithms clustered all Kenyan isolates in the same clades with ToLCArV, thus confirming the isolates to be a variant of the virus. There was no evidence of recombination within our isolates. Estimation of selection pressure within the virus population revealed the occurrence of negative or purifying selection in five out of the six coding regions of the sequences. Conclusions The begomovirus associated with tomato leaf curl diseases of tomato in Kenya is a variant of ToLCArV, possibly originating from Tanzania. There is low genetic diversity within the virus population and this information is useful in the development of appropriate management strategies for the disease in the country.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Vessela Mavrodieva ◽  
Delano James ◽  
Karen Williams ◽  
Sarika Negi ◽  
Aniko Varga ◽  
...  

Four of 19 Prunus germplasm accessions hand carried from the Ukraine into the United States without authorization were found to be infected with Plum pox virus (PPV). Of the three isolates characterized, isolates UKR 44189 and UKR 44191 were confirmed to be isolates of PPV strain W, and UKR 44188 was confirmed to be an isolate of PPV strain D. UKR 44189 and UKR 44191 are very closely related to the PPV strain W isolate LV-145bt (HQ670748) from Latvia. Nucleotide and amino acid sequence identities between these three isolates were greater than 99%. This indicates that the isolates are very closely related and likely originated from a common source. The high genetic diversity among PPV-W strain isolates allowed the identification of potential recombination events between PPV isolates. It appears also that GF 305 peach and Prunus tomentosa are not hosts for the PPV isolate UKR 44189.


Viruses ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Wycliff Kinoti ◽  
Fiona Constable ◽  
Narelle Nancarrow ◽  
Kim Plummer ◽  
Brendan Rodoni

2021 ◽  
Author(s):  
Juan Daniel Rios-Arboleda

&lt;p&gt;This research expands the original analysis of Baker and Costa (1987) including data from Europe and South America with the objective to understand if there are emerging latitudinal patterns. In addition, the threshold proposed by Zimmermann et al. (1997) it is evaluated with the data from tropical zones finding that this is a good predictor.&lt;/p&gt;&lt;p&gt;Mainly, recent Debris Flow occurred in South America are analyzed with the aim of identifying the best risk management strategies and their replicability for developing countries, particularly, the cases that have occurred in Colombia and Venezuela in the last 30 years are analyzed in order to compare management strategies and understand which are the most vulnerable areas to this phenomenon.&lt;/p&gt;&lt;p&gt;It is concluded that large-scale and multinational projects such as SED ALP are required in South America to better characterize events that have left multiple fatalities (sometimes hundreds of people) and better understand how to manage the risk on densely populated areas.&lt;/p&gt;&lt;p&gt;Finally, the use of amateur videos is proposed to characterize these events in nations with limited budgets for projects such as SED ALP, methodology that will be described extensively in later works.&lt;/p&gt;


2007 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Alberto Bezama ◽  
Pablo Aguayo ◽  
Odorico Konrad ◽  
Rodrigo Navia ◽  
Karl E. Lorber

Sign in / Sign up

Export Citation Format

Share Document