scholarly journals Unravelling the genetic causes of multiple malformation syndromes: A whole exome sequencing study of the Cypriot population

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253562
Author(s):  
Evie Kritioti ◽  
Athina Theodosiou ◽  
Thibaud Parpaite ◽  
Angelos Alexandrou ◽  
Nayia Nicolaou ◽  
...  

Multiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo. Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes (PCNT, UBE3A, KAT6A, SPR, POMGNT1, PIEZO2, PXDN, KDM6A, PHIP, HECW2, TFAP2A, CNOT3, AGTPBP1 and GAMT). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10–20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families.

2016 ◽  
Vol 31 (14) ◽  
pp. 1534-1539 ◽  
Author(s):  
Maya Kuperberg ◽  
Dorit Lev ◽  
Lubov Blumkin ◽  
Ayelet Zerem ◽  
Mira Ginsberg ◽  
...  

Whole exome sequencing enables scanning a large number of genes for relatively low costs. The authors investigate its use for previously undiagnosed pediatric neurological patients. This retrospective cohort study performed whole exome sequencing on 57 patients of “Magen” neurogenetic clinics, with unknown diagnoses despite previous workup. The authors report on clinical features, causative genes, and treatment modifications and provide an analysis of whole exome sequencing utility per primary clinical feature. A causative gene was identified in 49.1% of patients, of which 17 had an autosomal dominant mutation, 9 autosomal recessive, and 2 X-linked. The highest rate of positive diagnosis was found for patients with developmental delay, ataxia, or suspected neuromuscular disease. Whole exome sequencing warranted a definitive change of treatment for 5 patients. Genetic databases were updated accordingly. In conclusion, whole exome sequencing is useful in obtaining a high detection rate for previously undiagnosed disorders. Use of this technique could affect diagnosis, treatment, and prognostics for both patients and relatives.


2021 ◽  
pp. 1-7
Author(s):  
Tuğba Karaman Mercan ◽  
Ozden Altiok Clark ◽  
Ozgur Erkal ◽  
Banu Nur ◽  
Ercan Mihci ◽  
...  

Terminal deletions in the long arm of chromosome 4 are an uncommon event, with a worldwide incidence of approximately 0.001%. The majority of these deletions occur de novo. Terminal deletion cases are usually accompanied by clinical findings that include facial and cardiac anomalies, as well as intellectual disability. In this study, we describe the case of a 2-year-old girl, the fourth child born to consanguineous parents. While her karyotype was normal, a homozygous deletion was identified in the chromosome 4q35.2 region by subtelomeric FISH. A heterozygous deletion of the chromosome 4q35.2 region was observed in both parents. According to the literature, this is the first report of a case that has inherited a homozygous deletion of chromosome 4qter from carrier parents. Subsequent array-CGH analyses were performed on both the case and her parents. Whole-exome sequencing was also carried out to determine potential variants. We detected a NM_001111125.3:c.2329G&#x3e;T (p.Glu777Ter) nonsense variant of the <i>IQSEC2</i> gene in the girl, a variant that is related to X-linked intellectual disability.


2017 ◽  
Vol 41 (S1) ◽  
pp. S309-S309 ◽  
Author(s):  
H. Yoo ◽  
S.A. Kim ◽  
M. Park ◽  
J. Kim ◽  
W.J. Lim ◽  
...  

ObjectivesThe objective of this family-based whole exome sequencing (WES) is to examine genetic variants of autism spectrum disorder (ASD) in Korean population.MethodsThe probands with ASD and their biological parents were recruited in this study. We ascertained diagnosis based on DSM-5™ criteria, using Autism Diagnostic Observation Schedule and Autism Diagnostic Interview–Revised. We selected probands with typical phenotypes of ASD both in social interaction/communication and repetitive behaviour/limited interest domains, with intellectual disability (IQ < 70), for attaining homogeneity of the phenotypes. First, we performed WES minimum 50× for 13 probands and high-coverage pooled sequencing for their parents. We performed additional WES for 38 trio families, at least 100× depth. De novo mutations were confirmed by Sanger sequencing. All the sequence reads were mapped onto the human reference genome (hg19 without Y chromosome). Bioinformatics analyses were performed by BWA-MEM, Picard, GATK, and snpEff for variant annotation. We selected de novo mutation candidates from probands, which are neither detected in two pooled samples nor both parents.ResultsFifty-one subjects with ASD (5 females, 40∼175 months, mean IQ 42) and their families were included in this study. We discovered 109 de novo variants from 46 families. Twenty-nine variants are expected to be amino acid changing, potentially causing deleterious effects. We assume CELSR3, MYH1, ATXN1, IDUA, NFKB1, and C4A/C4B may have adverse effect on central nerve system.ConclusionsWe observed novel de novo variants which are assumed to contribute to development of ASD with typical phenotypes and low intelligence in WES study.Disclosure of interestThis work has been supported by Healthcare Technology R&D project (No: A120029) by Ministry of Health and Welfare, Republic of Korea.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 560
Author(s):  
Ana Arteche-López ◽  
Maria José Gómez Rodríguez ◽  
Maria Teresa Sánchez Calvin ◽  
Juan Francisco Quesada-Espinosa ◽  
Jose Miguel Lezana Rosales ◽  
...  

Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome.


2017 ◽  
Vol 152 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Hui Zeng ◽  
Jian-Guang Tang ◽  
Yi-Feng Yang ◽  
Zhi-Ping Tan ◽  
Jie-Qiong Tan

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a hereditary neurological disorder mostly manifested with a classical triad: progressive early-onset cerebellar ataxia, lower limb pyramidal signs, and peripheral neuropathy. We employed whole-exome sequencing and bioinformatics to identify the genetic cause in an ARSACS patient from a consanguineous family. Based on whole-exome sequences of the patient and her healthy parents, a novel homozygous deletion variant (NM_014363: c.9495_9508del; p.F3166Tfs*9) in the SACS gene was identified in the patient. This frameshift mutation is predicted to generate a truncated sacsin protein, which results in the loss of the C-terminal 1,406 amino acids. Our study provides a potential genetic diagnosis for the patient and expands the spectrum of SACS mutations.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Motoharu Hamada ◽  
Hideki Muramatsu ◽  
Yusuke Okuno ◽  
Ayako Yamamori ◽  
Taro Yoshida ◽  
...  

BACKGROUND: Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of genetic disorders characterized by bone marrow failure, physical anomalies, and various kinds of organ complications. In addition to classical IBMFSs, such as Fanconi anemia, Diamond-Blackfan anemia, Dyskeratosis congenita, Shwachman-Diamond syndrome, and familial platelet disorders, many types of unclassified IBMFSs are reported. Over 100 genes are considered causative genes; however, the precise genetic diagnosis of IBMFSs remains challenging. We developed a capture-based target sequencing method for IBMFSs that covers more than 180 associated genes. Our system achieved genetic diagnosis for 225 (35%) of 738 patients between 2013 and 2018. However, the causative gene remained unknown for 513 (65%) patients, and further genetic analysis of these "target-negative" cases was necessary to achieve a precise diagnosis. METHODS: We performed whole exome sequencing (WES) for patients who were "target-negative" but strongly suspected of having IBMFS based on the following clinical characteristics: physical or organ anomalies (skin, nail, hair, skeletal, growth, cardiac, lung, liver, or genitourinary), family history of hematological disorder, young age (≤2 years), short telomere length (&lt;-2.0 SD), and hyper sensitivity to the chromosome breakage test. A sequencing library was prepared using the SureSelect Human All Exon 50Mb kit (Agilent Technologies, Santa Clara, CA, USA) and it was sequenced using the HiSeq2000 platform (Illumina, San Diego, CA, USA), according to manufacturers' instructions. The candidate germline variants were detected through our Genomon-exome analysis pipeline. With mean coverage of 100×, ≥ 85% of all protein coding bases were covered at 20× or more. RESULTS: Among the 513 "target-negative" cases, 166 patients were evaluated, of whom 17 patients' parents were also analyzed in a trio-based analysis. New pathogenic variants were identified in 18 of the 166 (11%) patients according to the American College of Medical Genetics (ACMG) guidelines, of which 5 variants were revealed to be de novo. Diagnostic variants were identified in FANCF, SRP54, RPL19, RPL5, RTEL1, RUNX1, MECOM, CDC42, GNE, SLNF14 (all n = 1). In addition to IBMFS-associated genes, causative genes for congenital hemolytic anemia (G6PD, PKLR), inborn error of metabolism (SLC46A1), and primary immune deficiency (NFKB2, LRBA) are also identified (all n = 1). Moreover, loss-of-function mutation of ADH5 gene are identified in three patients that seems to be associated to novel IBMFSs. On the other hand, no pathogenic variant in GATA2, ERCC6L2, LIG4, and SAMD9/SAMD9L genes that are reported as unclassified IBMFSs in Europe and United States are identified in our cohort. CONCLUSION: Our findings support the utility of WES (especially trio-based analysis) as a diagnostic tool for IBMFSs. Furthermore, genetic background of IBMFSs in East Asia seems to be different from that of Europe and United States. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guanting Lu ◽  
Qiongling Peng ◽  
Lianying Wu ◽  
Jian Zhang ◽  
Liya Ma

Abstract Background Coffin–Siris syndrome (CSS) is a multiple malformation syndrome characterized by intellectual disability associated with coarse facial features, hirsutism, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. CSS represents a small group of intellectual disability, and could be caused by at least twelve genes. The genetic background is quite heterogenous, making it difficult for clinicians and genetic consultors to pinpoint the exact disease types. Methods Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for three trios affected with intellectual disability and clinical features similar with those of Coffin–Siris syndrome. Sanger sequencing was used to verify the detected single-nucleotide variants (SNVs). Results All of the three cases were female with normal karyotypes of 46, XX, born of healthy, non-consanguineous parents. A 6q25 microdeletion (arr[hg19]6q25.3(155,966,487–158,803,979) × 1) (2.84 Mb) (case 1) and two loss-of-function (LoF) mutations of ARID1B [c.2332 + 1G > A in case 2 and c.4741C > T (p.Q1581X) in case 3] were identified. All of the three pathogenic abnormalities were de novo, not inherited from their parents. After comparison of publicly available microdeletions containing ARID1B, four types of microdeletions leading to insufficient production of ARID1B were identified, namely deletions covering the whole region of ARID1B, deletions covering the promoter region, deletions covering the termination region or deletions covering enhancer regions. Conclusion Here we identified de novo ARID1B mutations in three Chinese trios. Four types of microdeletions covering ARID1B were identified. This study broadens current knowledge of ARID1B mutations for clinicians and genetic consultors.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tiejia Jiang ◽  
Jia Gao ◽  
Lihua Jiang ◽  
Lu Xu ◽  
Congying Zhao ◽  
...  

Epilepsy is one of the most common neurological disorders in pediatric patients with other underlying neurological defects. Identifying the underlying etiology is crucial for better management of the disorder. We performed trio-whole exome sequencing in 221 pediatric patients with epilepsy. Probands were divided into seizures with developmental delay/intellectual disability (DD/ID) and seizures without DD/ID groups. Pathogenic (P) or likely pathogenic (LP) variants were identified in 71/110 (64.5%) patients in the seizures with DD/ID group and 21/111 (18.9%) patients in the seizures without DD/ID group (P &lt; 0.001). Eighty-seven distinct P/LP single nucleotide variants (SNVs)/insertion deletions (Indels) were detected, with 55.2% (48/87) of them being novel. All aneuploidy and P/LP copy number variants (CNVs) larger than 100 Kb were identifiable by both whole-exome sequencing and copy number variation sequencing (CNVseq) in 123 of individuals (41 pedigrees). Ten of P/LP CNVs in nine patients and one aneuploidy variant in one patient (Patient #56, #47, XXY) were identified by CNVseq. Herein, we identified seven genes (NCL, SEPHS2, PA2G4, SLC35G2, MYO1C, GPR158, and POU3F1) with de novo variants but unknown pathogenicity that were not previously associated with epilepsy. Potential effective treatment options were available for 32 patients with a P/LP variant, based on the molecular diagnosis. Genetic testing may help identify the molecular etiology of early onset epilepsy and DD/ID and further aid to choose the appropriate treatment strategy for patients.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


Sign in / Sign up

Export Citation Format

Share Document