scholarly journals Is salamander arboreality limited by broad-scale climatic conditions?

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255393
Author(s):  
Erica K. Baken ◽  
Lauren E. Mellenthin ◽  
Dean C. Adams

Identifying the historical processes that drive microhabitat transitions across deep time is of great interest to evolutionary biologists. Morphological variation can often reveal such mechanisms, but in clades with high microhabitat diversity and no concomitant morphological specialization, the factors influencing animal transitions across microhabitats are more difficult to identify. Lungless salamanders (family: Plethodontidae) have transitioned into and out of the arboreal microhabitat many times throughout their evolutionary history without substantial morphological specialization. In this study, we explore the relationship between microhabitat use and broad-scale climatic patterns across species’ ranges to test the role of climate in determining the availability of the arboreal microhabitat. Using phylogenetic comparative methods, we reveal that arboreal species live in warmer, lower elevation regions than terrestrial species. We also employ ecological niche modeling as a complementary approach, quantifying species-level pairwise comparisons of niche overlap. The results of this approach demonstrate that arboreal species on average display more niche overlap with other arboreal species than with terrestrial species after accounting for non-independence of niche model pairs caused by geographic and phylogenetic distances. Our results suggest that occupation of the arboreal microhabitat by salamanders may only be possible in sufficiently warm, low elevation conditions. More broadly, this study indicates that the impact of micro-environmental conditions on temporary microhabitat use, as demonstrated by small-scale ecological studies, may scale up dramatically to shape macroevolutionary patterns.

2016 ◽  
Vol 53 (5) ◽  
pp. 43-53
Author(s):  
G. Klāvs ◽  
A. Kundziņa ◽  
I. Kudrenickis

Abstract Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.


2019 ◽  
Vol 876 ◽  
pp. 1108-1128 ◽  
Author(s):  
Till Zürner ◽  
Felix Schindler ◽  
Tobias Vogt ◽  
Sven Eckert ◽  
Jörg Schumacher

Combined measurements of velocity components and temperature in a turbulent Rayleigh–Bénard convection flow at a low Prandtl number of $Pr=0.029$ and Rayleigh numbers of $10^{6}\leqslant Ra\leqslant 6\times 10^{7}$ are conducted in a series of experiments with durations of more than a thousand free-fall time units. Multiple crossing ultrasound beam lines and an array of thermocouples at mid-height allow for a detailed analysis and characterization of the complex three-dimensional dynamics of the single large-scale circulation roll in a cylindrical convection cell of unit aspect ratio which is filled with the liquid metal alloy GaInSn. We measure the internal temporal correlations of the complex large-scale flow and distinguish between short-term oscillations associated with a sloshing motion in the mid-plane as well as varying orientation angles of the velocity close to the top/bottom plates and the slow azimuthal drift of the mean orientation of the roll as a whole that proceeds on a time scale up to a hundred times slower. The coherent large-scale circulation drives a vigorous turbulence in the whole cell that is quantified by direct Reynolds number measurements at different locations in the cell. The velocity increment statistics in the bulk of the cell displays characteristic properties of intermittent small-scale fluid turbulence. We also show that the impact of the symmetry-breaking large-scale flow persists to small-scale velocity fluctuations thus preventing the establishment of fully isotropic turbulence in the cell centre. Reynolds number amplitudes depend sensitively on beam-line position in the cell such that different definitions have to be compared. The global momentum and heat transfer scalings with Rayleigh number are found to agree with those of direct numerical simulations and other laboratory experiments.


2021 ◽  
Vol 13 (3) ◽  
pp. 1195
Author(s):  
Ravijanya Chippagiri ◽  
Hindavi R. Gavali ◽  
Rahul V. Ralegaonkar ◽  
Mike Riley ◽  
Andy Shaw ◽  
...  

Under the India “Housing for all” scheme, 20 million urban houses have to be constructed by 2022, which requires the rate of construction to be around 8000 houses/day. Previous results by the team show that present design methods for affordable buildings and structures in India need improvement. The challenges are the disposal of solid waste generated from agro-industrial activities and the energy peak demand in extremely hot and cold seasons. The development of bio-based urban infrastructure which can adapt to the climatic conditions has been proposed. Inclusion of sustainable materials such as agro-industrial by-products and insulation materials has resulted in effective environmental sustainability and climate change adaptability. Precast components are highlighted as a suitable solution for this purpose as well as to fulfil the need of mass housing. India has a lesser record in implementing this prefab technology when compared to a global view. For the first time, a novel and sustainable prefab housing solution is tested for scale-up using industrial waste of co-fired blended ash (CBA) and the results are presented here. A model house of real scale measuring 3 × 3 × 3 m3 was considered as a base case and is compared with 17 other combinations of model house with varying alignment of prefab panels. Comparison was made with commercially available fly ash brick and CBA brick with a conventional roof slab. A simulation study was conducted regarding cost and energy analysis for all the 18 cases. Various brick and panel compositions with CBA for housing were tried and the superior composition was selected. Similarly, 18 model houses of real scale were simulated, with different combinations of walls made of bricks or panels and different building orientations, to check the impact on energy peak cooling and cost. Results show that peak cooling load can be reduced by six times with bio-based prefab panels. Prefab construction can be considered for mass housing ranging above 100 housing units, each consisting of an area of 25 m2.


Author(s):  
Julius Huho ◽  
Margaret Muriuki

Kenya is rapidly urbanizing at an annual rate of about 4.3%. One of the consequences of urbanization has been the problem of food insecurity in peri-urban areas. Increased migration to urban from rural areas has enhanced food insecurity in these areas. The peri-urban area of Kangundo-Tala in Machakos County is one of the fastest-growing peri-urban areas due to its proximity to the capital city of Nairobi. This study investigated the impact of home gardening in enhancing food security in the rapidly urbanizing middle-income Kangundo–Tala peri-urban areas of Machakos County, Kenya. The specific objectives of the study were: to identify the causes of households’ food insecurity in the study area; to examine the factors influencing the adoption of home gardening and; to establish the role of home gardening as a measure of households’ food security. To measure food security, three consumption behaviors were analyzed: consumption changes, food expenditure reduction and income expansion. A qualitative approach was adopted where a total of 120 newly settled households were interviewed. The three main causes of food insecurity were identified (i) small land sizes, (ii) low and erratic rainfall and, (iii) the socialization of peri-urban dwellers. About 68% of the households were practicing at least one form of home gardening. The need for safe and nutritious food, seasonal unavailability, and inaccessibility of food encouraged the establishment of home gardens. From the gardens, households were able to diversify their diets, access safe food and have food readily available. With enhanced stability in food availability, accessibility, and utilization, the study concluded that home gardens played a major role in enhancing food. However, the production was at a very small scale. Up-scaling of home gardening by the Ministry of Agriculture through training was recommended.    


1999 ◽  
Vol 556 ◽  
Author(s):  
T. S. Rudisill ◽  
J. C. Marra ◽  
D. K. Peeler

AbstractThe Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF2), and 12 wt% plutonium oxide (PuO2 ). Approximately 950 kg of this material are currently stored at Rocky Flats.The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700°C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet.Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700°C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4±1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700°C for 2 hr.


2020 ◽  
Vol 1 (01) ◽  
pp. 24-37
Author(s):  
Vivi Arfiani ◽  
Jamri Jamri

Forest fires are mostly caused by land preparation activities for various forms of agriculture and forestry business (ranging from small scale such as shifting cultivation to large scale such as the development of Industrial Plantation Forest or HTI as well as oil palm, rubber plantations, etc.) which consequently often exacerbated by extreme climatic conditions such as a long dry season Law enforcement against forest and land burning actors is able to provide a deterrent effect for the perpetrators as well as to compensate for any losses arising from forest and land burning. Correct knowledge through systematic steps This type of research is classified into normative legal research or library research, providing boundaries through applicable laws and regulations in order to minimize all forms of threats and ri risk of pollution and environmental destruction for the preservation of life and ecosystems, an area exposed to extensive haze disasters to exceed national borders certainly requires a concrete effort to end the haze disaster caused by burning land and forests. The strategy to ensnare perpetrators of forest and land burning, both corporations and individuals, the State of Indonesia, ensnaring the law through a criminal law approach actually provides an alternative to uphold justice. Moreover, the impact of forest and land fires is not small. The Corruption Law Approach can be used as a new option to ensnare perpetrators of forest and land burning.


2017 ◽  
Vol 2 ◽  
pp. 98 ◽  
Author(s):  
Daniel M. Parker ◽  
Jordi Landier ◽  
Aung Myint Thu ◽  
Khin Maung Lwin ◽  
Gilles Delmas ◽  
...  

Background: Myanmar has one of the largest malaria burdens in Southeast Asia. Along the border with Thailand, Plasmodium falciparum parasites are increasingly showing reduced sensitivity to artemisinin combination therapies. Given that there are no current alternative treatment therapies, one proposed solution to the threat of untreatable P. falciparum malaria is to eliminate the parasite from the region. Several small-scale elimination projects have been piloted along the Myanmar-Thailand border. Following their success, this operational research aimed to scale up the elimination to a broad area of Eastern Kayin State, Myanmar. Methods: The project relied on geographic reconnaissance and a geographic information system, community engagement, generalized access to community-based early diagnosis and treatment, near real-time epidemiological surveillance, cross sectional malaria prevalence surveys and targeted mass drug administration in villages with high prevalence of P. falciparum malaria. Molecular markers of drug resistance were also monitored in individuals with symptomatic and asymptomatic infections. Discussion: This project illustrates the establishment of an elimination project and operational research in a remote, rural area encompassing several armed groups, multiple political organizations and a near-absent health care infrastructure. The establishment of the project relied on a strong rapport with the target community, on-the-ground knowledge (through geographic surveys and community engagement), rapid decision making and an approach that was flexible enough to quickly adapt to a complex landscape. The elimination project is ongoing, now over three years in operation, and assessment of the impact of this operational research will follow. This project has relevance not only for other malaria elimination projects but also for operational research aimed at eliminating other diseases.


2017 ◽  
Vol 2 ◽  
pp. 98 ◽  
Author(s):  
Daniel M. Parker ◽  
Jordi Landier ◽  
Aung Myint Thu ◽  
Khin Maung Lwin ◽  
Gilles Delmas ◽  
...  

Background: Myanmar has one of the largest malaria burdens in the Greater Mekong Subregion (GMS). Throughout the GMS, Plasmodium falciparum parasites are increasingly resistant to artemisinin combination therapies. Given that there are no current alternative treatment therapies, one proposed solution to the threat of untreatable P. falciparum malaria is to eliminate the parasite from the region. Several small-scale elimination projects have been piloted in the GMS, including along the Myanmar-Thailand border. Following the success of the pilot elimination project along the Myanmar-Thailand border, there was a scale up to a broad area of Eastern Kayin State, Myanmar. Here we describe the establishment of the scale up elimination project in Easter Kayin State. Methods: The scale up relied on geographic reconnaissance and a geographic information system, community engagement, generalized access to community-based early diagnosis and treatment, near real-time epidemiological surveillance, cross sectional malaria prevalence surveys and targeted mass drug administration in villages with high prevalence of P. falciparum malaria. Molecular markers of drug resistance were also monitored in individuals with symptomatic and asymptomatic infections. Discussion: This protocol illustrates the establishment of an elimination project and operational research in a remote, rural area encompassing several armed groups, multiple political organizations and a near-absent health care infrastructure. The establishment of the project relied on a strong rapport with the target community, on-the-ground knowledge (through geographic surveys and community engagement), rapid decision making and an approach that was flexible enough to quickly adapt to a complex landscape. The elimination project is ongoing, now over three years in operation, and assessment of the impact of this operational research will follow. This project has relevance not only for other malaria elimination projects but also for operational research aimed at eliminating other diseases.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2015 ◽  
Vol 3 (1) ◽  
pp. 31 ◽  
Author(s):  
Rohani Mohd ◽  
Badrul Hisham Kamaruddin ◽  
Khulida Kirana Yahya ◽  
Elias Sanidas

The purpose of the present study is twofold: first, to investigate the true values of Muslim owner managers; second, to examine the impact of these values on entrepreneurial orientations of Muslim small-scale entrepreneurs. 850 Muslim owner managers were selected randomly using the sampling frame provided by MajlisAmanah Rakyat Malaysia (MARA). 162 completed questionnaires were collected and analyzed. For this paper only two dimensions of entrepreneurial orientations were analyzed: proactive orientation and innovative orientation. Interestingly, the findings revealed that Muslim businessmen/women are honest, loyal, disciplined and hard working. Loyalty and honesty are positively related to proactive orientation, while discipline and hard-work are positively related to innovative orientation. The findings provide implications for existing relevant theories, policy makers, practitioners and learning institutions. 


Sign in / Sign up

Export Citation Format

Share Document