scholarly journals Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255591
Author(s):  
Jordon M. Inkol ◽  
Samuel E. Hocker ◽  
Anthony J. Mutsaers

Background Canine urothelial carcinoma is the most common form of canine bladder cancer. Treatment with chemotherapy has variable response rates leading to most dogs succumbing to their disease within a year. Cannabidiol is an emerging treatment within the field of oncology. In reported in vivo studies, cannabidiol has induced apoptosis, reduced cell migration, and acted as a chemotherapy sensitizer in various human tumor types. The aim of this study was to characterize the effects of cannabidiol on canine urothelial carcinoma cell viability and apoptosis as both a single agent and in combination with chemotherapy in vitro. Results Cannabidiol reduced cell viability and induced apoptosis in canine urothelial cells as determined by crystal violet viability assay and annexin V/propidium iodide flow cytometry. Furthermore, combinations of cannabidiol with mitoxantrone and vinblastine chemotherapy yielded significantly reduced cell viability and increased apoptosis compared to single agent treatment alone. The drug interactions were deemed synergistic based on combination index calculations. Conversely, the combination of cannabidiol and carboplatin did not result in decreased cell viability and increased apoptosis compared to single agent treatment. Combination index calculations suggested an antagonistic interaction between these drugs. Finally, the combination of the non-steroidal anti-inflammatory drug piroxicam with cannabidiol did not significantly affect cell viability, although, some cell lines demonstrated decreased cell viability when mitoxantrone was combined with piroxicam. Conclusions Cannabidiol showed promising results as a single agent or in combination with mitoxantrone and vinblastine for treatment of canine urothelial carcinoma cells. Further studies are justified to investigate whether these results are translatable in vivo.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dexin Shen ◽  
Yayun Fang ◽  
Fenfang Zhou ◽  
Zhao Deng ◽  
Kaiyu Qian ◽  
...  

Abstract Background CDCA3 is an important component of the E3 ligase complex with SKP1 and CUL1, which could regulate the progress of cell mitosis. CDCA3 has been widely identified as a proto-oncogene in multiple human cancers, however, its role in promoting human bladder urothelial carcinoma has not been fully elucidated. Methods Bioinformatic methods were used to analyze the expression level of CDCA3 in human bladder urothelial carcinoma tissues and the relationship between its expression level and key clinical characteristics. In vitro studies were performed to validate the specific functions of CDCA3 in regulating cell proliferation, cell migration and cell cycle process. Alterations of related proteins was investigated by western blot assays. In vivo studies were constructed to validate whether silencing CDCA3 could inhibit the proliferation rate in mice model. Results Bioinformatic analysis revealed that CDCA3 was significantly up-regulated in bladder urothelial carcinoma samples and was related to key clinical characteristics, such as tumor grade and metastasis. Moreover, patients who had higher expression level of CDCA3 tend to show a shorter life span. In vitro studies revealed that silencing CDCA3 could impair the migration ability of tumor cells via down-regulating EMT-related proteins such as MMP9 and Vimentin and inhibit tumor cell growth via arresting cells in the G1 cell cycle phase through regulating cell cycle related proteins like p21. In vivo study confirmed that silencing CDCA3 could inhibit the proliferation of bladder urothelial carcinoma cells. Conclusions CDCA3 is an important oncogene that could strengthen the migration ability of bladder urothelial carcinoma cells and accelerate tumor cell growth via regulating cell cycle progress and is a potential biomarker of bladder urothelial carcinoma.


2009 ◽  
Vol 15 (5) ◽  
pp. 1730-1740 ◽  
Author(s):  
Stephan Leitner ◽  
Katrina Sweeney ◽  
Daniel Öberg ◽  
Derek Davies ◽  
Enrique Miranda ◽  
...  

2018 ◽  
Vol 127 (06) ◽  
pp. 387-395 ◽  
Author(s):  
Xu Han ◽  
Qiaobei Li ◽  
Chunyan Wang ◽  
Yinyan Li

Abstract Background Previous study has been reported that braykinin B2 receptor (Bdkrb2) involves in high glucose-induced renal and podocytes injuries. However, there have been some studies with contradictory results that Bdkrb2 has a protective effect on hyperglycemia-induced injuries in vivo and in vitro. The purpose of the present study was carried out to further investigate the post-transcriptional regulatory mechanism of microRNA (miR) in high glucose-treated podocytes by targeting Bdkrb2 signaling in vitro. Methods The CCK-8 and flow cytometry were performed to measure the cell viability and apoptosis. Gene and protein expression were assayed by RT-qPCR and western blotting, respectively. Results High glucose treatment decreased cell viability and induced membrane and DNA damage, as well as apoptosis in podocytes. High glucose treatment also increased the expression of Bdkrb2, which was blocked by miR-204-3p mimics transfection in podocytes. Bioinformatics and luciferase reporter activity showed that miR-204-3p was directly targeted to the 3′-untranslated region (3′-UTR) of Bdkrb2. High glucose-induced apoptosis and dysfunction in podocytes were reserved by miR-204-3p mimics transfection, while the effects of miR-204-3p mimics in high glucose-treated podocytes were neutralized by overexpressed Bdkrb2. Conclusions These findings suggested that miR-204-3p may play a protective role in high glucose-induced apoptosis and dysfunction in podocytes through down-regulation of Bdkrb2.


2020 ◽  
Vol 21 (16) ◽  
pp. 5815
Author(s):  
Hongqing Xie ◽  
Xiaotong Li ◽  
Weiwei Yang ◽  
Liping Yu ◽  
Xiasen Jiang ◽  
...  

Gastric cancer is the most common malignant tumor of the digestive tract and is great challenge in clinical treatment. N6-(2-Hydroxyethyl)-adenosine (HEA), widely present in various fungi, is a natural adenosine derivative with many biological and pharmacological activities. Here, we assessed the antineoplastic effect of HEA on gastric carcinoma. HEA exerted cytotoxic effects against gastric carcinoma cells (SGC-7901 and AGS) in a dose and time-dependent manner. Additionally, we found that HEA induced reactive oxygen species production and mitochondrial membrane potential depolarization. Moreover, it could trigger caspase-dependent apoptosis, promoting intracellular Ca2+-related endoplasmic reticulum (ER) stress and autophagy. On the other hand, HEA could significantly inhibit the growth of transplanted tumors in nude mice and induce apoptosis of tumor tissues cells in vivo. In conclusion, HEA induced apoptosis of gastric carcinoma cells in vitro and in vivo, demonstrating that HEA is a potential chemotherapeutic agent for gastric carcinoma.


2018 ◽  
Vol 119 (6) ◽  
pp. 4592-4606 ◽  
Author(s):  
Sheng-Yuan Huang ◽  
Chih-Cheng Chien ◽  
Ruey-Shyang Hseu ◽  
Victoria Ying Jen Huang ◽  
Shang Ying Chiang ◽  
...  

2015 ◽  
Vol 20 (4) ◽  
Author(s):  
Eunyoung Hong ◽  
Eunil Lee ◽  
Joonhee Kim ◽  
Daeho Kwon ◽  
Yongchul Lim

AbstractThe high frequency of intrinsic resistance to TNF-related apoptosisinducing ligand (TRAIL) in tumor cell lines has necessitated the development of strategies to sensitize tumors to TRAIL-induced apoptosis. We previously showed that elevated pressure applied as a mechanical stressor enhanced TRAIL-mediated apoptosis in human lung carcinoma cells in vitro and in vivo. This study focused on the effect of elevated pressure on the sensitization of TRAIL-resistant cells and the underlying mechanism. We observed elevated pressure-induced sensitization to TRAIL-mediated apoptosis in Hep3B cells, accompanied by the activation of several caspases and the mitochondrial signaling pathway. Interestingly, the enhanced apoptosis induced by elevated pressure was correlated with suppression of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) phosphorylation and CREB without any change to other MAPKs. Phosphorylation of Bcl-2-associated death promoter (BAD) also decreased, leading to inhibition of the mitochondrial pathway. To confirm whether the activation of pERK1/2 plays a key role in the TRAIL-sensitizing effect of elevated pressure, Hep3B cells were pre-treated with the ERK1/2-specific inhibitor PD98059 instead of elevated pressure. Co-treatment with PD98059 and TRAIL augmented TRAIL-induced apoptosis and decreased BAD phosphorylation. The inhibition of ERK1/2 activation by elevated pressure and PD98059 also reduced BH3 interacting-domain death agonist (BID), thereby amplifying apoptotic stress at the mitochondrial level. Our results suggest that elevated pressure enhances TRAIL-induced apoptosis of Hep3B cells via specific suppression of ERK1/2 activation among MAPKs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 47-47
Author(s):  
Jessie-F Fecteau ◽  
Ila Bharati ◽  
Morgan O'Hayre ◽  
Tracy Handel ◽  
Thomas J. Kipps ◽  
...  

Abstract Abstract 47 Chronic Lymphocytic Leukemia (CLL) is characterized by an accumulation of mature monoclonal B cells in the blood, secondary lymphoid tissue, and marrow. Despite their accumulation in vivo, CLL cells undergo spontaneous apoptosis in vitro unless rescued by extrinsic factors derived from the leukemia-cell microenvironment. Monocyte-derived Nurse-Like Cells (NLCs) and Marrow Stromal Cells (MSCs), representing the leukemic microenvironment, have been show to sustain CLL cell survival and more importantly to protect CLL cells from drug-induced apoptosis in vitro and possibly in vivo. Such protective niches are thought to prevent current therapies from achieving complete remission in patients. Investigating the mechanism(s) by which cells from the microenvironment promote CLL cell survival, particularly the signaling pathways triggered, will allow for the identification of new therapeutic targets aiming to disrupt these protective interactions. NLCs and MSCs have been shown to produce the chemokine SDF-1 (CXCL12), which can enhance CLL cell survival. We recently found that ZAP-70+ aggressive CLL cells responded by an increased survival to this chemokine, compared to ZAP-70- indolent CLL cells, and that this response was accompanied by the activation of the ERK pathway. Attempting to abrogate this survival pathway, we found that sorafenib (BAY 43–9006, Nexavar) a multi-kinase inhibitor targeting among others Raf kinases and thereby the RAF/MEK/ERK pathway, strongly reduced CLL cell viability in a time and dose dependent manner. A regimen of one single dose of 10uM of sorafenib significantly reduced CLL cell viability to 18+/−10% cells after 48hrs compared to vehicle control (DMSO; 100%; n=5). The daily addition of 1uM sorafenib also significantly decreased CLL cell viability, leading to 31+/−21% and 11+/−5% viable cells after 6 and 7 days respectively, compared to DMSO (n=5). More importantly, our results show that sorafenib induces CLL cell death in the presence of NLCs and MSCs. A single dose of sorafenib (10uM) rapidly decreased the fraction of viable CLL cells overtime, passing from 40+/−16% after 1 day to 10+/−3% after 4 days (n=4) in the context of NLCs and to 25+/−3% after 2 days and 14+/−3% after 4 days in the presence of MSCs, when compared to vehicle control (>80%; n=4). In the presence of NLCs, the 1uM daily regimen also uncovered an increased sensitivity of ZAP-70+ CLL cells to this drug, reducing in 6 days their viability to 13+/−2% (n=4), which approximately half the fraction of viable cells remaining in the ZAP-70- group (40+/−16%; n=7). We next studied sorafenib-mediated cytotoxicity by investigating its impact on the expression of pro-survival molecules. We found that Mcl-1, Bcl-2 and Bcl-xL protein expression was reduced in CLL cells compared to vehicle control, when stimulated with CXCL12 (n=3). In the presence of NLCs and MSCs, only Mcl-1 expression was downregulated, which was also associated with a reduction of the active form of the transcription factor CREB, involved in Mcl-1 expression. Because Mcl-1 expression can be regulated by ERK and AKT pathways, we next investigated if they were abrogated by sorafenib. We indeed found that MEK, ERK, and AKT activation were reduced by this inhibitor compared to vehicle control (n=3). We therefore propose that the cytotoxic effect of sorafenib on CLL cells is due to its interference with at least these two major survival pathways. Since sorafenib caused apoptosis of CLL cells in context of the microenvironment, we reasoned that it might also cause apoptosis of chemotherapy resistant CLL cells. To test this hypothesis, we studied cells from fludarabine-refractory patients. In the presence of NLCs, a single dose of 10uM sorafenib induced a significant reduction in CLL cell viability after 2 days: only 4+/−2% viable cells remained compared to 78+/−12% for the vehicle control (n=4). A comparable observation was made in the presence of MSCs: sorafenib potently induced apoptosis, leaving 12+/−3% live cells after 2 days, compared to vehicle control (71+/−16%; n=4). These results are very promising as they suggest that sorafenib could be an effective novel therapeutic for CLL, affecting the viability of the leukemic cells even in protective niches. Since sorafenib has been approved by the FDA in 2007 for the treatment of advanced hepatocellular carcinoma, a pilot study is currently being planned at UCSD to evaluate the potential of this drug in CLL in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 65-65
Author(s):  
Warren Fiskus ◽  
Jacqueline Smith ◽  
Uma Mudunuru ◽  
Stacey Hembruff ◽  
Ruben Reyes ◽  
...  

Abstract Abstract 65 The canonical WNT-β-catenin pathway is essential to the cellular processes of self-renewal, growth and survival. Deregulated WNT-β-catenin in transformed hematopoietic progenitor cells inhibits the multi-protein degradation complex formed by axin, adenomatous polyposis coli (APC) and glycogen synthase kinase 3β (GSK3β). This results in the preservation, nuclear translocation and interaction of β-catenin with the T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factor, which regulates the expression of genes such as cyclin D1, Myc, survivin and Axin. BC2059 (β-Cat Pharmaceuticals) is a potent small molecule, anthraquinone oxime-analog inhibitor of the WNT-β catenin pathway. Treatment with BC2059 mediates the degradation of β-catenin. In the present studies, we determined the activity of BC2059 in human cultured and primary CML and advanced MPN versus normal progenitor cells. Exposure to 50 to 100 nM of BC2059 induced cell cycle G1 phase accumulation and apoptosis (40 to 80%) of the cultured MPN cells HEL92.1.7 (HEL) and UKE1 cells expressing the mutant JAK2V617F, as well as of the CML K562 and LAMA-84 cells expressing BCR-ABL. BC2059 treatment also induced apoptosis of CD34+ primary MPN cells derived from the peripheral blood of patients with advanced MPN expressing mutant JAK2, as well as of primary CD34+ CML progenitor cells. In contrast, as compared to the untreated controls, BC2059 treatment did not induce apoptosis of normal CD34+ progenitor cells. Exposure to BC2059 resulted in marked down regulation of β-catenin protein levels and the activity of the LEF1/TCF4 transcription factor, which was accompanied with reduced levels of cyclin D1, MYC, survivin and up regulation of Axin 2 levels, as detected by immunoblot analyses of the cell lysates of BC2059-treated CML and MPN cells. We also determined the in vivo anti-MPN activity of BC2059. Following the tail vein infusion of HEL cells and establishment of MPN, NOD-SCID mice were treated with 15 or 20 mg/Kg of BC2059 administered b.i.w for three weeks via the tail vein. As compared to the control, BC2059-treated mice demonstrated significantly improved survival (p <0. 001). Next, we examined the effects of co-treatment with BC2059 (20 to 50 nM) and JAK2-targeted TKI TG101209 (TG) (200–1000 nM) or BCR-ABL-targeted TKI nilotinib (10–20 nM) against MPN or CML cells, respectively. As compared to treatment with each agent alone co-treatment with BC2059 and TG synergistically induced apoptosis of HEL and primary CD34+ MPN cells. Additionally, co-treatment with BC2059 and nilotinib induced synergistic apoptosis of K562 and primary CML progenitor cells. Further, combined treatment with BC2059 and the HDAC inhibitor panobinostat (10 to 20 nM) also induced significantly more apoptosis of HEL and K562 (p < 0.01), as well as of the primary CD34+ MPN and primary CML progenitor cells. In normal CD34+ progenitor cells, the BC2059-based combinations were remarkably less toxic (p < 0.01). These findings demonstrate that BC2059 exerts notable in vitro and in vivo activity against human MPN and CML versus normal CD34+ progenitor cells. Additionally, BC2059 may exert superior activity in combination with JAK2 or BCR-ABL-targeted TKI, or with pan-HDAC inhibitor against human MPN or CML progenitor cells. Disclosures: Reyes: Millennium, Sanofi Aventis: Consultancy. Horrigan:BetaCat Pharmaceuticals: Employment, Equity Ownership. Sharma:Beta Cat Pharmaceuticals: Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4412-4412 ◽  
Author(s):  
Deepak Sampath ◽  
Sylvia Herter ◽  
Frank Herting ◽  
Ellen Ingalla ◽  
Michelle Nannini ◽  
...  

Introduction Obinutuzumab (GA101) is a novel glycoengineered type II, anti-CD20 monoclonal antibody induces a high level of direct cell death. As a result of glycoengineering, GA101 has increased affinity for FcgRIIIa on effector cells resulting in enhanced direct cell death and ADCC induction. GA101 is currently in pivotal clinical trials in CLL, indolent NHL and DLCBL. ABT-199 (GDC-0199) is a novel, orally bioavailable, selective Bcl-2 inhibitor that induces robust apoptosis in preclinical models of hematological malignancies and is currently in clinical trials for CLL, NHL and MM. Based on their complementary mechanisms of action involving increased apoptosis (GDC-0199) or direct cell death (GA101) the combination of anti-CD20 therapy with a Bcl-2 inhibitor has the potential for greater efficacy in treating B lymphoid malignancies. Experimental Methods The combination of GA101 or rituximab with GDC-0199 was studied in vitro utilizing assays that measure direct cell death induction/apoptosis (AxV/Pi positivity) on WSU-DLCL2, SU-DHL4 DLBCL and Z138 MCL cells by FACS and the impact of Bcl-2 inhibition on ADCC induction. In vivo efficacy of the combination of GA101 or rituximab and GDC-0199 was evaluated in SU-DHL4 and Z138 xenograft models. Results GA101 and rituximab enhanced cell death induction when combined with GDC-0199 in SU-DHL4, WSU-DLCL2 and Z138 cell lines. When combined at optimal doses an additive effect of the two drugs was observed. GDC-0199 did not negatively impact the capability of GA101 or rituximab to induce NK-cell mediated ADCC. Combination of GDC-0199 and GA101 induced a greater than additive anti-tumor effects in the SU-DHL4 and Z138 xenograft models resulting in tumor regressions and delay in tumor regrowth when compared to monotherapy. Moreover, continued single-agent treatment with GDC-0199 after combination with GA101 resulted in sustained in vivo efficacy in the SU-DHL4 model. Conclusions Our data demonstrate that the combination of GA101 with GDC-0199 results in enhanced cell death and robust anti-tumor efficacy in xenograft models representing NHL sub-types that is comparable to the combination of rituximab with GDC-0199. In addition, single-agent treatment with GDC-0199 following combination with GA101 sustains efficacy in vivo suggesting a potential benefit in continued maintenance therapy with GDC-0199. Collectively the preclinical data presented here supports clinical investigation of GA101 and GDC-0199 combination therapy, which is currently in a phase Ib clinical trial (clinical trial.gov identifier NCT01685892). Disclosures: Sampath: Genentech: Employment, Equity Ownership. Herter:Roche: Employment. Herting:Roche: Employment. Ingalla:Genentech: Employment. Nannini:Genentech: Employment. Bacac:Roche: Employment. Fairbrother:Genentech: Employment, Equity Ownership. Klein:Roche Glycart AG: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4452-4452
Author(s):  
Eric Sanchez ◽  
Mingjie Li ◽  
Suzie Vardanyan ◽  
Jillian Gottlieb ◽  
Kevin Delijani ◽  
...  

Introduction We previously demonstrated that severe combined immunodeficient (SCID) mice bearing the human multiple myeloma (MM) xenograft LAGκ-1A treated with single agent carfilzomib or the alkylating agent (AA) cyclophosphamide (CY) did not show a reduction in tumor growth compared to vehicle-treated mice. In contrast, carfilzomib with CY resulted in a significant decrease in tumor size and IgG levels when compared to mice treated with single agent carfilzomib or CY or vehicle alone. We have also shown that the combination of carfilzomib and another AA, bendamustine, decreased tumor size and IgG levels, when compared to mice treated with single agents or vehicle alone. However, no data is available regarding sequencing of the proteasome inhibitors (PI) carfilzomib or bortezomib with the AA melphalan (MEL). Thus, we used our SCID-hu MM models to evaluate the sequencing of these drugs with MEL. These studies are critical as both PIs are now being used to treat MM. Thus, we evaluated the response, toxicity and survival of animals treated sequentially with these drugs. Methods Each naïve SCID mouse was surgically implanted with a 20 – 40 mm3 MM tumor piece into the left hind limb superficial gluteal muscle. Seven days post–implantation mice were randomized into treatment groups based on human immunoglobulin (Ig) G levels. Carfilzomib stock solution (2 mg/ml) was diluted to 3 mg/kg using 5% dextrose and administered twice weekly on two consecutive days via intravenous (i.v.) injection. Bortezomib stock solution (1 mg/ml) was diluted to 0.25 mg/kg using NaCl and administered twice weekly (Thursdays and Saturdays) via i.v. injection. MEL stock solution (3 mg/ml) was diluted to 1 mg/kg using PBS and administered once weekly via intraperitoneal injection. Mice (n = 10/group) were initially treated with carfilzomib or MEL alone until tumor progression. Progression was defined as an increase in paraprotein equal to or above 25% confirmed on one consecutive assessment. Mice initially treated with carfilzomib were randomized to continue to receive single agent carfilzomib, add in MEL alone or combine it with ongoing carfilzomib, substitute single agent bortezomib, or discontinue treatment altogether. A similar treatment strategy was evaluated with mice treated initially with MEL. At progression, these animals were continued on single agent MEL, carfilzomib added alone or with continuation of MEL, or discontinued treatment. Tumor size was measured using standard calipers and human IgG levels with an ELISA (Bethyl Laboratories, Montgomery, TX). This study was conducted according to protocols approved by the Institutional Animal Care and Use Committee. Results When carfilzomib was administered first, followed by the addition of MEL, a modest nonsignificant reduction in tumor size was observed compared to either drug alone. In addition, substitution of single agent bortezomib for carfilzomib showed no effect on tumor size. However, when MEL was administered first and carfilzomib was added after disease progression, at days 35 and 42 (end of study) post tumor implantation, mice treated with the combination showed a reduction in tumor volume compared to mice that discontinued melphalan (P = 0.0378 and P = 0.0105, respectively) whereas mice treated with carfilzomib alone showed no reduction in tumor size following progression from MEL. Notably, throughout the study there was a trend toward smaller tumors in mice receiving this combination when compared to mice receiving single agent treatment with carfilzomib or MEL alone or vehicle. Similar effects were observed on human IgG levels. Overall, all mice survived combination or single agent treatment with these agents. Conclusions These in vivo studies using our human MM LAGκ–1A SCID–hu model show that animals progressing from initial MEL treatment show a reduction in MM tumor burden when carfilzomib is added to MEL at progression. In contrast, mice progressing from initial carfilzomib treatment did not benefit from the addition of MEL at disease progression. No drug-related deaths occurred in any treatment group. This study demonstrates that using a different MM model (LAGκ-1A), that the PI carfilzomib can produce anti-tumor effects among mice progressing from single-agent MEL treatment, providing further support for the use of this PI as an agent that can help overcome drug resistance in MM. Disclosures: Berenson: Onyx Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document