MicroRNA-204-3p Attenuates High Glucose-Induced MPC5 Podocytes Apoptosis by Targeting Braykinin B2 Receptor

2018 ◽  
Vol 127 (06) ◽  
pp. 387-395 ◽  
Author(s):  
Xu Han ◽  
Qiaobei Li ◽  
Chunyan Wang ◽  
Yinyan Li

Abstract Background Previous study has been reported that braykinin B2 receptor (Bdkrb2) involves in high glucose-induced renal and podocytes injuries. However, there have been some studies with contradictory results that Bdkrb2 has a protective effect on hyperglycemia-induced injuries in vivo and in vitro. The purpose of the present study was carried out to further investigate the post-transcriptional regulatory mechanism of microRNA (miR) in high glucose-treated podocytes by targeting Bdkrb2 signaling in vitro. Methods The CCK-8 and flow cytometry were performed to measure the cell viability and apoptosis. Gene and protein expression were assayed by RT-qPCR and western blotting, respectively. Results High glucose treatment decreased cell viability and induced membrane and DNA damage, as well as apoptosis in podocytes. High glucose treatment also increased the expression of Bdkrb2, which was blocked by miR-204-3p mimics transfection in podocytes. Bioinformatics and luciferase reporter activity showed that miR-204-3p was directly targeted to the 3′-untranslated region (3′-UTR) of Bdkrb2. High glucose-induced apoptosis and dysfunction in podocytes were reserved by miR-204-3p mimics transfection, while the effects of miR-204-3p mimics in high glucose-treated podocytes were neutralized by overexpressed Bdkrb2. Conclusions These findings suggested that miR-204-3p may play a protective role in high glucose-induced apoptosis and dysfunction in podocytes through down-regulation of Bdkrb2.

Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guping Mao ◽  
Yiyang Xu ◽  
Dianbo Long ◽  
Hong Sun ◽  
Hongyi Li ◽  
...  

Abstract Objectives Aberrations in exosomal circular RNA (circRNA) expression have been identified in various human diseases. In this study, we investigated whether exosomal circRNAs could act as competing endogenous RNAs (ceRNAs) to regulate the pathological process of osteoarthritis (OA). This study aimed to elucidate the specific MSC-derived exosomal circRNAs responsible for MSC-mediated chondrogenic differentiation using human bone marrow-derived MSCs (hMSCs) and a destabilization of the medial meniscus (DMM) mouse model of OA. Methods Exosomal circRNA deep sequencing was performed to evaluate the expression of circRNAs in human bone marrow-derived MSCs (hMSCs) induced to undergo chondrogenesis from day 0 to day 21. The regulatory and functional roles of exosomal circRNA_0001236 were examined on day 21 after inducing chondrogenesis in hMSCs and were validated in vitro and in vivo. The downstream target of circRNA_0001236 was also explored in vitro and in vivo using bioinformatics analyses. A luciferase reporter assay was used to evaluate the interaction between circRNA_0001236 and miR-3677-3p as well as the target gene sex-determining region Y-box 9 (Sox9). The function and mechanism of exosomal circRNA_0001236 in OA were explored in the DMM mouse model. Results Upregulation of exosomal circRNA_0001236 enhanced the expression of Col2a1 and Sox9 but inhibited that of MMP13 in hMSCs induced to undergo chondrogenesis. Moreover, circRNA_0001236 acted as an miR-3677-3p sponge and functioned in human chondrocytes via targeting miR-3677-3p and Sox9. Intra-articular injection of exosomal circRNA_0001236 attenuated OA in the DMM mouse model. Conclusions Our results reveal an important role for a novel exosomal circRNA_0001236 in chondrogenic differentiation. Overexpression of exosomal circRNA_0001236 promoted cartilage-specific gene and protein expression through the miR-3677-3p/Sox9 axis. Thus, circRNA_0001236-overexpressing exosomes may alleviate cartilage degradation, suppressing OA progression and enhancing cartilage repair. Our findings provide a potentially effective therapeutic strategy for treating OA.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ze-Tian Shen ◽  
Ying Chen ◽  
Gui-Chun Huang ◽  
Xi-Xu Zhu ◽  
Rui Wang ◽  
...  

Abstract Background Radiotherapy failure is a significant clinical challenge due to the development of resistance in the course of treatment. Therefore, it is necessary to further study the radiation resistance mechanism of HCC. In our early study, we have showed that the expression of Aurora-A mRNA was upregulated in HCC tissue samples or cells, and Aurora-A promoted the malignant phenotype of HCC cells. However, the effect of Aurora-A on the development of HCC radioresistance is not well known. Methods In this study, colony formation assay, MTT assays, flow cytometry assays, RT-PCR assays, Western blot, and tumor xenografts experiments were used to identify Aurora-A promotes the radioresistance of HCC cells by decreasing IR-induced apoptosis in vitro and in vivo. Dual-luciferase reporter assay, MTT assays, flow cytometry assays, and Western blot assay were performed to show the interactions of Aurora-A and NF-κB. Results We established radioresistance HCC cell lines (HepG2-R) and found that Aurora-A was significantly upregulated in those radioresistant HCC cells in comparison with their parental HCC cells. Knockdown of Aurora-A increased radiosensitivity of radioresistant HCC cells both in vivo and in vitro by enhancing irradiation-induced apoptosis, while upregulation of Aurora-A decreased radiosensitivity by reducing irradiation-induced apoptosis of parental cells. In addition, we have showed that Aurora-A could promote the expression of nuclear IkappaB-alpha (IκBα) protein while enhancing the activity of NF-kappaB (κB), thereby promoted expression of NF-κB pathway downstream effectors, including proteins (Mcl-1, Bcl-2, PARP, and caspase-3), all of which are associated with apoptosis. Conclusions Aurora-A reduces radiotherapy-induced apoptosis by activating NF-κB signaling, thereby contributing to HCC radioresistance. Our results provided the first evidence that Aurora-A was essential for radioresistance in HCC and targeting this molecular would be a potential strategy for radiosensitization in HCC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 47-47
Author(s):  
Jessie-F Fecteau ◽  
Ila Bharati ◽  
Morgan O'Hayre ◽  
Tracy Handel ◽  
Thomas J. Kipps ◽  
...  

Abstract Abstract 47 Chronic Lymphocytic Leukemia (CLL) is characterized by an accumulation of mature monoclonal B cells in the blood, secondary lymphoid tissue, and marrow. Despite their accumulation in vivo, CLL cells undergo spontaneous apoptosis in vitro unless rescued by extrinsic factors derived from the leukemia-cell microenvironment. Monocyte-derived Nurse-Like Cells (NLCs) and Marrow Stromal Cells (MSCs), representing the leukemic microenvironment, have been show to sustain CLL cell survival and more importantly to protect CLL cells from drug-induced apoptosis in vitro and possibly in vivo. Such protective niches are thought to prevent current therapies from achieving complete remission in patients. Investigating the mechanism(s) by which cells from the microenvironment promote CLL cell survival, particularly the signaling pathways triggered, will allow for the identification of new therapeutic targets aiming to disrupt these protective interactions. NLCs and MSCs have been shown to produce the chemokine SDF-1 (CXCL12), which can enhance CLL cell survival. We recently found that ZAP-70+ aggressive CLL cells responded by an increased survival to this chemokine, compared to ZAP-70- indolent CLL cells, and that this response was accompanied by the activation of the ERK pathway. Attempting to abrogate this survival pathway, we found that sorafenib (BAY 43–9006, Nexavar) a multi-kinase inhibitor targeting among others Raf kinases and thereby the RAF/MEK/ERK pathway, strongly reduced CLL cell viability in a time and dose dependent manner. A regimen of one single dose of 10uM of sorafenib significantly reduced CLL cell viability to 18+/−10% cells after 48hrs compared to vehicle control (DMSO; 100%; n=5). The daily addition of 1uM sorafenib also significantly decreased CLL cell viability, leading to 31+/−21% and 11+/−5% viable cells after 6 and 7 days respectively, compared to DMSO (n=5). More importantly, our results show that sorafenib induces CLL cell death in the presence of NLCs and MSCs. A single dose of sorafenib (10uM) rapidly decreased the fraction of viable CLL cells overtime, passing from 40+/−16% after 1 day to 10+/−3% after 4 days (n=4) in the context of NLCs and to 25+/−3% after 2 days and 14+/−3% after 4 days in the presence of MSCs, when compared to vehicle control (>80%; n=4). In the presence of NLCs, the 1uM daily regimen also uncovered an increased sensitivity of ZAP-70+ CLL cells to this drug, reducing in 6 days their viability to 13+/−2% (n=4), which approximately half the fraction of viable cells remaining in the ZAP-70- group (40+/−16%; n=7). We next studied sorafenib-mediated cytotoxicity by investigating its impact on the expression of pro-survival molecules. We found that Mcl-1, Bcl-2 and Bcl-xL protein expression was reduced in CLL cells compared to vehicle control, when stimulated with CXCL12 (n=3). In the presence of NLCs and MSCs, only Mcl-1 expression was downregulated, which was also associated with a reduction of the active form of the transcription factor CREB, involved in Mcl-1 expression. Because Mcl-1 expression can be regulated by ERK and AKT pathways, we next investigated if they were abrogated by sorafenib. We indeed found that MEK, ERK, and AKT activation were reduced by this inhibitor compared to vehicle control (n=3). We therefore propose that the cytotoxic effect of sorafenib on CLL cells is due to its interference with at least these two major survival pathways. Since sorafenib caused apoptosis of CLL cells in context of the microenvironment, we reasoned that it might also cause apoptosis of chemotherapy resistant CLL cells. To test this hypothesis, we studied cells from fludarabine-refractory patients. In the presence of NLCs, a single dose of 10uM sorafenib induced a significant reduction in CLL cell viability after 2 days: only 4+/−2% viable cells remained compared to 78+/−12% for the vehicle control (n=4). A comparable observation was made in the presence of MSCs: sorafenib potently induced apoptosis, leaving 12+/−3% live cells after 2 days, compared to vehicle control (71+/−16%; n=4). These results are very promising as they suggest that sorafenib could be an effective novel therapeutic for CLL, affecting the viability of the leukemic cells even in protective niches. Since sorafenib has been approved by the FDA in 2007 for the treatment of advanced hepatocellular carcinoma, a pilot study is currently being planned at UCSD to evaluate the potential of this drug in CLL in vivo. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rina Wu ◽  
Zheli Niu ◽  
Guangwei Ren ◽  
Lin Ruan ◽  
Lijun Sun

Abstract Background Diabetic nephropathy (DN) is a common complication of diabetes mellitus. Accumulating studies suggest that the deregulation of circular RNA (circRNA) is involved in DN pathogenesis. This study aimed to investigate the role of circSMAD4 in DN models. Methods Mice were treated with streptozotocin to establish DN models in vivo. Mouse glomerulus mesangial cells (SV40-MES13) were treated with high glucose to establish DN models in vitro. The expression of circSMAD4, miR-377-3p and bone morphogenetic protein 7 (BMP7) mRNA was measured by quantitative real-time PCR (qPCR). The releases of inflammatory factors were examined by ELISA. The protein levels of fibrosis-related markers, apoptosis-related markers and BMP7 were checked by western blot. Cell apoptosis was monitored by flow cytometry assay. The predicted relationship between miR-377-3p and circSMAD4 or BMP7 was validated by dual-luciferase reporter assay or pull-down assay. Results CircSMAD4 was poorly expressed in DN mice and HG-treated SV40-MES13 cells. HG induced SV40-MES13 cell inflammation, extracellular matrix (ECM) deposition and apoptosis. CircSMAD4 overexpression alleviated, while circSMAD4 knockdown aggravated HG-induced SV40-MES13 cell injuries. MiR-377-3p was targeted by circSMAD4, and miR-377-3p enrichment partly reversed the effects of circSMAD4 overexpression. BMP7 was a target of miR-377-3p, and circSMAD4 regulated BMP7 expression by targeting miR-377-3p. MiR-377-3p overexpression aggravated HG-induced injuries by suppressing BMP7. Conclusion CircSMAD4 alleviates HG-induced SV40-MES13 cell inflammation, ECM deposition and apoptosis by relieving miR-377-3p-mediated inhibition on BMP7 in DN progression.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
MingJun Shi ◽  
PingPing Tian ◽  
ZhongQiang Liu ◽  
Fan Zhang ◽  
YingYing Zhang ◽  
...  

Abstract Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling. Therefore, we assessed the expression levels of miR-27a, Sfrp1, Wnt signalling components, and extracellular matrix (ECM)-related molecules in vitro and in vivo. Sfrp1 was significantly down-regulated in a high-glucose environment, while miR-27a levels were markedly increased. A luciferase reporter assay confirmed that miR-27a down-regulated Sfrp1 by binding to the 3′ untranslated region directly. Further, NRK-52E cells under high-glucose conditions underwent transfection with miR-27a mimic or the corresponding negative control, miR-27a inhibitor or the corresponding negative control, si-Sfrp1, or combined miR-27a inhibitor and si-Sfrp1. Immunoblotting and immunofluorescence were performed to assess the relative expression levels of Wnt/β-catenin signalling and ECM components. The mRNA levels of Sfrp1, miR-27a, and ECM-related molecules were also detected by quantitative real-time PCR (qPCR). We found that miR-27a inhibitor inactivated Wnt/β-catenin signalling and reduced ECM deposition. Conversely, Wnt/β-catenin signalling was activated, while ECM deposition was increased after transfection with si-Sfrp1. Interestingly, miR-27a inhibitor attenuated the effects of si-Sfrp1. We concluded that miR-27a down-regulated Sfrp1 and activated Wnt/β-catenin signalling to promote renal fibrosis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yu-Shui Ma ◽  
Xiao-Li Yang ◽  
Yu-Shan Liu ◽  
Hua Ding ◽  
Jian-Jun Wu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are key regulators in the processes of tumor initiation, progression, and recurrence. The mechanism that maintains their stemness remains enigmatic, although the role of several long noncoding RNAs (lncRNAs) has been highlighted in the pancreatic cancer stem cells (PCSCs). In this study, we first established that PCSCs overexpressing lncRNA NORAD, and then investigated the effects of NORAD on the maintenance of PCSC stemness. Methods Expression of lncRNA NORAD, miR-202-5p and ANP32E in PC tissues and cell lines was quantified after RNA isolation. Dual-luciferase reporter assay, RNA pull-down and RIP assays were performed to verify the interactions among NORAD, miR-202-5p and ANP32E. We then carried out gain- and loss-of function of miR-202-5p, ANP32E and NORAD in PANC-1 cell line, followed by measurement of the aldehyde dehydrogenase activity, cell viability, apoptosis, cell cycle distribution, colony formation, self-renewal ability and tumorigenicity of PC cells. Results LncRNA NORAD and ANP32E were upregulated in PC tissues and cells, whereas the miR-202-5p level was down-regulated. LncRNA NORAD competitively bound to miR-202-5p, and promoted the expression of the miR-202-5p target gene ANP32E thereby promoting PC cell viability, proliferation, and self-renewal ability in vitro, as well as facilitating tumorigenesis of PCSCs in vivo. Conclusion Overall, lncRNA NORAD upregulates ANP32E expression by competitively binding to miR-202-5, which accelerates the proliferation and self-renewal of PCSCs.


2021 ◽  
Author(s):  
Tianchi Chen ◽  
Xiangtao Zheng ◽  
Yangyan He ◽  
Chenyang Qiu ◽  
Xiaohui Wang ◽  
...  

Abstract Background Circular RNAs have been demonstrated to play an important role in the development of vascular diseases. However, little is known about the role of circ-021774, also named circ-DAPK1, in vascular cell pyroptosis. Methods Circ-DAPK1 was selected from circular RNA sequencing data of HUVECs treated with high glucose medium and normal medium. RT-qPCR was used to determine the expression of circ-DAPK1 in vivo and in vitro. Dual luciferase reporter assay, fluorescence in situ hybridization (FISH) and RNA immunoprecipitation (RIP) were performed to prove the interaction of circ-DAPK1, miRNA-4454 and thioredoxin-interactingprotein (TXNIP). Adeno-associated virus (AAV) was injected intravenously to establish mouse models. PI staining, western-blot and transmission electron microscopy (TEM) analyses were performed to identify the role of circ-DAPK1 in promoting pyroptosis. Results We found that circ-DAPK1 was highly expressed in high glucose medium cultured HUVECs and db/db mice. In vitro and in vivo experiments demonstrated that circ-DAPK1 knockdown decreased the number of PI+ cells, the expression of ASC, NLRP3, GSDMD-N, cleaved caspase-1, IL-18 and IL-1β. In a mechanistic study, the circ-DAPK1/miRNA-4454/TXNIP signaling axis was demonstrated to promote vascular cell pyroptosis in diabetes. Conclusions Circ-DAPK1 functions as a promoter of vascular cell pyroptosis in diabetes via the circ-DAPK1/miRNA-4454/TXNIP signaling axis.


Sign in / Sign up

Export Citation Format

Share Document