scholarly journals Reliability of joint position sense measured in the knee using the level function of the iPhone “Measure” application

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256561
Author(s):  
Yuki Nakashima ◽  
Daisuke Iwaki ◽  
Toshihiro Kawae ◽  
Kenichi Fudeyasu ◽  
Hiroaki Kimura

An impaired joint position sense (JPS) causes activity limitations, postural imbalance, and falls. This study compares the reliability of knee JPS measurements between the iPhone’s “Measure” application and VICON motion capture system. Eleven healthy participants were recruited for the study. To conduct the study measures, the blindfolded participant, with an iPhone fixed to the lower non-dominant leg, was seated with their lower limbs in a relaxed position. The examiner held the participant’s leg at the target angle (30°/60° from initial position) for 5 s before releasing it. The participant was then instructed to move the leg to the same target angle and hold it for 5 s (replicated angle). Absolute angular error (AAE), i.e., the difference between the target and replicated angles, was measured. Intraclass and Pearson correlation coefficients established statistically significant relationships. The study comprised 6 males and 5 females of mean age 27.6±5.6 years, mean height 1.67±0.10 m, and mean body weight 60.7±10.3 kg. Strong correlations existed between iPhone and VICON 30° (ICC = 0.969, r = 0.960, P < 0.001) and 60° AAEs (ICC 0.969, r = 0.960, P < 0.001). Bland-Altman plots showed a mean difference of 0.43° and 0.20° between the AAE measurements at 30° and 60°, respectively. The iPhone’s “Measure” application is a simple and reliable method for measuring JPS in clinical practice and sports/fitness settings.

2000 ◽  
Vol 9 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Janice K. Loudon

Context:Proprioception of the knee joint.Objective:To determine the difference in knee-joint-angle reproduction in women with and without genu recurvatum (GR).Design:Between-subjects.Setting:Clinic.Subjects:Twenty-four women divided into 2 groups according to their standing knee-extension angle.Main Outcome Measures:Each subject's ability to actively reproduce active positioning of 3 knee angles (10, 30, and 60°) was measured. Pearson correlation coefficients were calculated to determine correlation values for standing GR angle and absolute angular error (AAE). A1 -way repeated-measures MANOVA was computed to evaluate differences in group, angle, limb, and trial.Results:Standing GR angle correlated significantly to the AAE angle at 10° (r= .48). The high-recurvatum group consistently scored worse, with the highest error rate occurring at 10°.Conclusion:Individuals with GR might have diminished proprioceptive sense at end-range extension that could potentially lead to knee injury.


2021 ◽  
pp. 1-6
Author(s):  
Adam L. Haggerty ◽  
Janet E. Simon ◽  
Dustin R. Grooms ◽  
Jeffrey A. Russell

Context: Proprioception is an individual’s awareness of body position in 3-dimensional space. How proprioceptive acuity changes under varying conditions such as joint position, load, and concentric or eccentric contraction type is not well understood. In addition, a limitation of the variety of techniques to assess proprioception is the lack of clinically feasible methods to capture proprioceptive acuity. The purpose of this study was to implement a readily available instrument, a smartphone, in the clinical evaluation of knee active joint position sense and to determine how joint angle, joint loading, and quadriceps contraction type affect an individual’s active joint position sense. Design: Cross-over study. Methods: Twenty healthy, physically active university participants (10 women and 10 men: 21.4 [2.0] y; 1.73 [0.1] m; 70.9 [14.3] kg) were recruited. Individuals were included if they had no neurological disorder, no prior knee surgery, and no recent knee injury. The participants were given a verbal instruction to locate a target angle and then were tasked with reproducing the target angle without visual or verbal cues. An accelerometer application on a smartphone was used to assess the angle to the nearest tenth of a degree. Three variables, each with 2 levels, were analyzed in this study: load (weighted and unweighted), contraction type (eccentric and concentric), and joint position (20° and 70°). A repeated-measures analysis of variance was conducted to assess the within-subjects factors of load, contraction, and position. Results: A significant difference of 0.50° (0.19°) of greater error with eccentric versus concentric contraction (P = .02) type was identified. In addition, a significant interaction was found for contraction × position, with a mean increase in error of 0.98° (0.33°) at the 20° position when contracting eccentrically (P = .03). Conclusions: Contraction type, specifically eccentric contraction at 20°, showed significantly greater error than concentric contraction. This suggests that, during eccentric contractions of the quadriceps, there may be decreased proprioceptive sensitivity compared with concentric contractions.


2012 ◽  
Vol 21 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Andrew E. Littmann ◽  
Masaki Iguchi ◽  
Sangeetha Madhavan ◽  
Jamie L. Kolarik ◽  
Richard K. Shields

Context:There is conflicting evidence in the literature regarding whether women with anterior cruciate ligament reconstruction (ACLR) demonstrate impaired proprioception. This study examined dynamic-position-sense accuracy and central-nervous-system (CNS) processing time between those with and without long-term ACLR.Objective:To compare proprioception of knee movement in women with ACLR and healthy controls.Design:Cross-sectional.Setting:Human neuromuscular performance laboratory.Participants:11 women (age 22.64 ± 2.4 y) with ACLR (1.6–5.8 y postsurgery) and 20 women without (age 24.05 ± 1.4 y).Interventions:The authors evaluated subjects using 3 methods to assess position sense. During knee flexion at pseudorandomly selected speeds (40°, 60°, 80°, 90°, and 100°/s), subjects indicated with their index finger when their knee reached a predetermined target angle (50°). Accuracy was calculated as an error score. CNS processing time was computed using the time to detect movement and the minimum time of angle indication. Passive and active joint-position sense were also determined at a slow velocity (3°/s) from various knee-joint starting angles.Main Outcome Measurements:Absolute and constant error of target angle, indication accuracy, CNS processing time, and perceived function.Results:Both subject groups showed similar levels of error during dynamic-position-sense testing, despite continued differences in perceived knee function. Estimated CNS processing time was 260 ms for both groups. Joint-position sense during slow active or passive movement did not differ between cohorts.Conclusions:Control and ACLR subjects demonstrated similar dynamic, passive, and active joint-position-sense error and CNS processing speed even though ACLR subjects reported greater impairment of function. The impairment of proprioception is independent of post-ACLR perception of function.


2018 ◽  
Vol 27 (4) ◽  
pp. 301-305 ◽  
Author(s):  
John Andrew Badagliacco ◽  
Andrew Karduna

Context: The relationship between overhead throwing and its effect on proprioception is not well understood. It is important to gain a better understanding of how these are related, to protect overhead athletes from an increased risk of injury. Objective: To investigate proprioceptive alterations in the overhead thrower’s shoulder. Design: Cross-sectional study. Independent variables are limb (dominant and nondominant), group (thrower or control), and target angle. Dependent variables are joint position sense and range of motion. Setting: An orthopedic biomechanics lab and university athletic training facility. Participants: Twelve Division I baseball pitchers and 13 nonthrowing control subjects. Intervention: Shoulder proprioception was assessed using an active joint repositioning task administered with an iPod Touch. Main Outcome Measure: Root mean square error and constant error of repositioning angles were used to assess accuracy and directional patterns, respectively. Results: Both groups demonstrated significantly higher joint acuity at the 80° external rotation target angle compared with 60° (1.5° [0.5°], P = .01). There were no differences in accuracy between groups. Constant error revealed differing repositioning patterns between limbs for the pitchers and also between groups for the dominant side. Although the throwing shoulder overshot the target angles by 0.4°, all nonthrowing shoulders undershot by an average of 2.7°. Conclusions: There is no difference in shoulder joint position sense accuracy between throwers and nonthrowers, although both groups display increased accuracy closer to their end range of external rotation. The throwing shoulder demonstrates a different repositioning pattern, overshooting the desired target angle, while all other shoulders undershoot.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Defne Kaya ◽  
Hande Guney-Deniz ◽  
Cetin Sayaca ◽  
Mahmut Calik ◽  
Mahmut Nedim Doral

Objective. The purpose of this study was to determine the effects of lower extremity motor control exercises on knee proprioception, muscle strength, and functional level in patients with anterior cruciate ligament reconstruction (ACL-R). Materials and Methods. Thirty-two of the 57 patients with ACL-R using tibialis anterior allografts were divided into two groups. Group I: lower extremity motor control exercises were added to the standard rehabilitation program. Group II: standard rehabilitation program was applied. Effects of lower extremity motor control exercises on quadriceps and hamstring muscles strength, knee joint position sense, and hop test were evaluated. Results. There were no differences in muscle strength and endurance of the quadriceps and hamstring between the operative and nonoperative sides in Group I (p>0.05) while there were significant differences in strength of the quadriceps and hamstring between the operative and nonoperative sides in Group II (p<0.05). There were significant differences in the endurance of the quadriceps and hamstring and knee joint position sense at 15°, 45°, and 75° between the operative sides of the patients in both groups (p<0.05). Conclusions. The neuromuscular control exercises program was found to be more effective in reducing the difference in strength while the standard program was found to be more effective in reducing the difference in endurance between the operated knee and the other knee. This study revealed that neuromuscular control exercises should also be used to improve knee proprioception sense following ACL-R.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


Author(s):  
Adel M. Madkhali ◽  
Shibili Nuhmani

Abstract Background Lateral ankle sprain is one of the most common injuries in competitive sports. Previous studies which investigated muscle strength and proprioception (joint position sense) focused on subjects who sustained ankle sprain with instability. It is also important to investigate strength deficits and proprioception in subjects with a history of ankle sprain without instability. Therefore the aim of the study is to investigate proprioception and muscle strength deficits in athletes with lateral ankle sprain. Methods Twenty-four male athletes with a history of lateral ankle sprain and 24 age-matched controls (mean age of 22.42±4.13 years, mean height of 173±5.73 cm, and mean weight of 71.20±7.55 Kg) participated in this cross-sectional study. Peak torque and peak torque ratio at speeds of 30 and 120°/s for concentric and eccentric ankle inversion/eversion were evaluated using an isokinetic dynamometer. The joint position sense of the ankle joint was evaluated using an active angle reproduction test. Result Peak torque produced was significantly less in subjects with history of ankle sprain in concentric inversion 30°/s(t(47)=4.11; p=0.000, Cohen’s d=1.29), concentric inversion 120°/s (t(47)=3.01; p=0.006, Cohen’s d=1.13), concentric eversion 30°/s (t(47)=3.85; p=0.001, Cohen’s d=1.24) and concentric eversion 120°/s (t(47)=3.15; p=0.005, Cohen’s d=1.09). At the same time there was no significant difference observed in eccentric eversion peak torque in both speed (eccentric eversion 30°/s p=0.079; eccentric eversion 120°/s p=0.867) between experimental and control group. No significant difference was found in the joint position sense in the maximal active inversion −5° position (p=0.312) and the 15° inversion position (P=0.386) between both group. Conclusion The study’s results reported a significantly less peak torque of invertors and evertors during concentric movements in athletes with history of ankle sprain. At the same time, no significant difference reported in the evertor/invertor peak torque ratio, and active joint position sense between the 2 groups.


Author(s):  
Emin Ulas Erdem ◽  
Banu Ünver ◽  
Eda Akbas ◽  
Gizem Irem Kinikli

BACKGROUND: Performing thoracic manipulations for neck pain can result in immediate improvements in neck function. OBJECTIVE: The aim of this study was to investigate the immediate effects of thoracic manipulation on cervical joint position sense and cervical range of motion in individuals with chronic mechanical neck pain. METHODS: Eighty male volunteers between 18–25 years and having chronic or recurrent neck or shoulder pain of at least 3 months duration with or without arm pain were randomized into two groups: Thoracic Manipulation Group (TMG:50) and Control Group (CG:30), with a pretest-posttest experimental design. The TMG was treated with thoracic extension manipulation while the CG received no intervention. Cervical joint position error and cervical range of motion of the individuals were assessed at baseline and 5 minutes later. RESULTS: There was no difference in demographic variables such as age (p= 0.764), Body Mass Index (p= 0.917) and Neck Pain Disability Scale (NPDS) scores (p= 0.436) at baseline outcomes between TMG and CGs. Joint position error outcomes between the two groups following intervention were similar in all directions at 30 and 50 degrees. Differences in range of motion following intervention in neck flexion (p< 0.001) and right rotation (p= 0.004) were higher in TMG compared to CG. CONCLUSIONS: A single session of thoracic manipulation seems to be inefficient on joint position sense in individuals with mild mechanical neck pain. However, thoracic manipulation might be an effective option to increase flexion and rotation of the cervical region as an adjunctive to treatment.


Sign in / Sign up

Export Citation Format

Share Document