scholarly journals Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258928
Author(s):  
Syeda Madiha ◽  
Zehra Batool ◽  
Saiqa Tabassum ◽  
Laraib Liaquat ◽  
Sadia Sadir ◽  
...  

The rotenone-induced animal model of Parkinson’s disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.

2018 ◽  
Vol 38 (4) ◽  
pp. 482-493 ◽  
Author(s):  
AY Al-Brakati ◽  
RB Kassab ◽  
MS Lokman ◽  
EK Elmahallawy ◽  
HK Amin ◽  
...  

The aim of this study is to investigate the protective effects of thymoquinone (TQ) and ebselen (Eb) on arsenic (As)-induced renal toxicity in female rats. Sodium arsenite was orally administrated at a dose of 20 mg/kg body weight daily for 28 days, either alone or 1 h before TQ (10 mg/kg) or Eb (5 mg/kg) administration. Renal tissue As concentration and oxidative stress markers, including lipid peroxidation (LPO), nitrite/nitrate, and glutathione (GSH) levels, were determined. In addition to the oxidative stress response, antioxidant enzyme activities including that of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were measured. Exposure to As elicited a significant increase in As concentration and significant modifications to the redox state of the kidney, as was evidenced by a significant elevation in LPO and nitrite/nitrate concentration, with a concomitant reduction in GSH content and antioxidant enzyme activity. The oxidant/antioxidant imbalance observed in As toxicity was associated with a significant elevation in renal tumor necrosis factor α, interleukin 6, B-cell lymphoma 2 (Bcl-2)-associated X protein, and caspase 3 levels, in addition to a significant decrease in Bcl-2 levels. Post-administration of TQ and Eb markedly prevented As-induced oxidative stress, inflammation, apoptosis, and As accumulation in the renal tissue and reduced histological renal damage. These findings demonstrate that TQ, the main bioactive phytochemical constituent of Nigella sativa seed oil, and Eb, an organoselenium compound, could significantly inhibit As-induced oxidative damage, apoptosis, and inflammation, and significantly attenuate the accumulation of As in renal tissues by facilitating As biomethylation and excretion.


2019 ◽  
Vol 70 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Pinar Erkekoglu ◽  
Ming-Wei Chao ◽  
Chia-Yi Tseng ◽  
Bevin P. Engelward ◽  
Ozge Kose ◽  
...  

AbstractExposure to alkyl anilines may lead to bladder cancer, which is the second most frequent cancer of the urogenital tract. 3,5-dimethylaniline is highly used in industry. Studies on its primary metabolite 3,5-dimethylaminophenol (3,5-DMAP) showed that this compound causes oxidative stress, changes antioxidant enzyme activities, and leads to death of different mammalian cells. However, there is no in vitro study to show the direct effects of 3,5-DMAP on human bladder and urothelial cells. Selenocompounds are suggested to decrease oxidative stress caused by some chemicals, and selenium supplementation was shown to reduce the risk of bladder cancer. The main aim of this study was to investigate whether selenocompounds organic selenomethionine (SM, 10 µmol/L) or inorganic sodium selenite (SS, 30 nmol/L) could reduce oxidative stress, DNA damage, and apoptosis in UROtsa cells exposed to 3,5-DMAP. 3,5-DMAP caused a dose-dependent increase in intracellular generation of reactive oxygen species, and its dose of 50 µmol/L caused lipid peroxidation, protein oxidation, and changes in antioxidant enzyme activities in different cellular fractions. The comet assay also showed single-strand DNA breaks induced by the 3,5-DMAP dose of 50 µmol/L, but no changes in double-strand DNA breaks. Apoptosis was also triggered. Both selenocompounds provided partial protection against the cellular toxicity of 3,5-DMAP. Low selenium status along with exposure to alkyl anilines can be a major factor in the development of bladder cancer. More mechanistic studies are needed to specify the role of selenium in bladder cancer.


2020 ◽  
Vol 34 ◽  
pp. 205873842095014
Author(s):  
Mamdooh Ghoneum ◽  
Shaymaa Abdulmalek ◽  
Deyu Pan

Introduction: Oxidative stress is a key contributor to aging and age-related diseases. In the present study, we examine the protective effects of PFT, a novel kefir product, against age-associated oxidative stress using aged (10-month-old) mice. Methods: Mice were treated with PFT orally at a daily dose of 2 mg/kg body weight over 6 weeks, and antioxidant status, protein oxidation, and lipid peroxidation were studied in the brain, liver, and blood. Results: PFT supplementation significantly reduced the oxidative stress biomarkers malondialdehyde (MDA) and nitric oxide; reversed the reductions in glutathione (GSH) levels, total antioxidant capacity (TAC), and anti-hydroxyl radical (AHR) content; enhanced the antioxidant enzyme activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD); inhibited the liver enzyme levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT); significantly reduced triglyceride (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels; and significantly elevated high density lipoprotein (HDL) levels. Interestingly, PFT supplementation reversed the oxidative changes associated with aging, thus bringing levels to within the limits of the young control mice in the brain, liver, and blood. We also note that PFT affects the redox homeostasis of young mice and that it is corrected post-treatment with PFT. Conclusion: Our findings show the effectiveness of dietary PFT supplementation in modulating age-associated oxidative stress in mice and motivate further studies of PFT’s effects in reducing age-associated disorders where free radicals and oxidative stress are the major cause.


1994 ◽  
Vol 120 (6) ◽  
pp. 374-377 ◽  
Author(s):  
K. Punnonen ◽  
M. Ahotupa ◽  
K. Asaishi ◽  
M. Hy�ty ◽  
R. Kudo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document