scholarly journals Change of human mobility during COVID-19: A United States case study

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259031
Author(s):  
Justin Elarde ◽  
Joon-Seok Kim ◽  
Hamdi Kavak ◽  
Andreas Züfle ◽  
Taylor Anderson

With the onset of COVID-19 and the resulting shelter in place guidelines combined with remote working practices, human mobility in 2020 has been dramatically impacted. Existing studies typically examine whether mobility in specific localities increases or decreases at specific points in time and relate these changes to certain pandemic and policy events. However, a more comprehensive analysis of mobility change over time is needed. In this paper, we study mobility change in the US through a five-step process using mobility footprint data. (Step 1) Propose the Delta Time Spent in Public Places (ΔTSPP) as a measure to quantify daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal Component Analysis (PCA) to reduce the ΔTSPP time series of each county to lower-dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis to find counties that exhibit similar latent components. (Step 4) Investigate local and global spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investigate how various population characteristics and behavior correlate with mobility patterns. Results show that by describing each county as a linear combination of the three latent components, we can explain 59% of the variation in mobility trends across all US counties. Specifically, change in mobility in 2020 for US counties can be explained as a combination of three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3) short-term reduction in mobility. Furthermore, we find that US counties that are geographically close are more likely to exhibit a similar change in mobility. Finally, we observe significant correlations between the three latent components of mobility change and various population characteristics, including political leaning, population, COVID-19 cases and deaths, and unemployment. We find that our analysis provides a comprehensive understanding of mobility change in response to the COVID-19 pandemic.

Author(s):  
Shuhei Nomura ◽  
Yuta Tanoue ◽  
Daisuke Yoneoka ◽  
Stuart Gilmour ◽  
Takayuki Kawashima ◽  
...  

AbstractIn the COVID-19 era, movement restrictions are crucial to slow virus transmission and have been implemented in most parts of the world, including Japan. To find new insights on human mobility and movement restrictions encouraged (but not forced) by the emergency declaration in Japan, we analyzed mobility data at 35 major stations and downtown areas in Japan—each defined as an area overlaid by several 125-meter grids—from September 1, 2019 to March 19, 2021. Data on the total number of unique individuals per hour passing through each area were obtained from Yahoo Japan Corporation (i.e., more than 13,500 data points for each area). We examined the temporal trend in the ratio of the rolling seven-day daily average of the total population to a baseline on January 16, 2020, by ten-year age groups in five time frames. We demonstrated that the degree and trend of mobility decline after the declaration of a state of emergency varies across age groups and even at the subregional level. We demonstrated that monitoring dynamic geographic and temporal mobility information stratified by detailed population characteristics can help guide not only exit strategies from an ongoing emergency declaration, but also initial response strategies before the next possible resurgence. Combining such detailed data with data on vaccination coverage and COVID-19 incidence (including the status of the health care delivery system) can help governments and local authorities develop community-specific mobility restriction policies. This could include strengthening incentives to stay home and raising awareness of cognitive errors that weaken people's resolve to refrain from nonessential movement.


2020 ◽  
Author(s):  
Thomas Sigler ◽  
Sirat Mahmuda ◽  
Anthony Kimpton ◽  
Julia Loginova ◽  
Pia Wohland-Jakhar ◽  
...  

Abstract Background: COVID-19 is an emergent infectious disease that has spread geographically to become a global pandemic. While much research focuses on the epidemiological and virological aspects of the COVID-19 transmission, there remains a gap in knowledge regarding the drivers of geographical diffusion between places. Here, we use quantile regression to model the roles of globalisation, human settlement and population characteristics as socio-spatial determinants of COVID-19 diffusion over a six-week period in March and April 2020.Results: The quantile regression model suggest that globalisation and settlement population characteristics related to high human mobility predict disease diffusion. Human development level (HDI) and total population predict COVID-19 diffusion in countries with a high number of total confirmed cases per million whereas larger household size, older populations, and globalisation tied to human interaction predict COVID-19 diffusion in countries with a low number of total confirmed cases per million. Conclusions: The analysis confirms that globalisation, settlement and population characteristics lead to greater disease diffusion, and primarily variables tied to high human mobility. These outcomes serve to inform policies around ‘flattening the curve’, particularly as they related to anticipated relocation diffusion from more- to less-developed countries and regions, and hierarchical diffusion from countries with higher population and density. Epidemiological strategies must be tailored to suit the range of human mobility patterns, as well as the variety of settlement and population characteristics.


2020 ◽  
Author(s):  
Thomas Sigler ◽  
Sirat Mahmuda ◽  
Anthony Kimpton ◽  
Julia Loginova ◽  
Pia Wohland-Jakhar ◽  
...  

Abstract Background: COVID-19 is an emergent infectious disease that has spread geographically to become a global pandemic. While much research focuses on the epidemiological and virological aspects of the COVID-19 transmission, there remains a gap in knowledge regarding the drivers of geographical diffusion between places. Here, we use quantile regression to model the roles of globalisation, human settlement and population characteristics as socio-spatial determinants of COVID-19 diffusion over a six-week period in March and April 2020. Results: The quantile regression model suggest that globalisation and settlement population characteristics related to high human mobility predict disease diffusion. Human development level (HDI) and total population predict COVID-19 diffusion in countries with a high number of total confirmed cases per million whereas larger household size, older populations, and globalisation tied to human interaction predict COVID-19 diffusion in countries with a low number of total confirmed cases per million. Conclusions: The analysis confirms that globalisation, settlement and population characteristics lead to greater disease diffusion, and primarily variables tied to high human mobility. These outcomes serve to inform policies around ‘flattening the curve’, particularly as they related to anticipated relocation diffusion from more- to less-developed countries and regions, and hierarchical diffusion from countries with higher population and density. Epidemiological strategies must be tailored to suit the range of human mobility patterns, as well as the variety of settlement and population characteristics.


2021 ◽  
Vol 13 (4) ◽  
pp. 2178
Author(s):  
Songkorn Siangsuebchart ◽  
Sarawut Ninsawat ◽  
Apichon Witayangkurn ◽  
Surachet Pravinvongvuth

Bangkok, the capital city of Thailand, is one of the most developed and expansive cities. Due to the ongoing development and expansion of Bangkok, urbanization has continued to expand into adjacent provinces, creating the Bangkok Metropolitan Region (BMR). Continuous monitoring of human mobility in BMR aids in public transport planning and design, and efficient performance assessment. The purpose of this study is to design and develop a process to derive human mobility patterns from the real movement of people who use both fixed-route and non-fixed-route public transport modes, including taxis, vans, and electric rail. Taxi GPS open data were collected by the Intelligent Traffic Information Center Foundation (iTIC) from all GPS-equipped taxis of one operator in BMR. GPS probe data of all operating GPS-equipped vans were collected by the Ministry of Transport’s Department of Land Transport for daily speed and driving behavior monitoring. Finally, the ridership data of all electric rail lines were collected from smartcards by the Automated Fare Collection (AFC). None of the previous works on human mobility extraction from multi-sourced big data have used van data; therefore, it is a challenge to use this data with other sources in the study of human mobility. Each public transport mode has traveling characteristics unique to its passengers and, therefore, specific analytical tools. Firstly, the taxi trip extraction process was developed using Hadoop Hive to process a large quantity of data spanning a one-month period to derive the origin and destination (OD) of each trip. Secondly, for van data, a Java program was used to construct the ODs of van trips. Thirdly, another Java program was used to create the ODs of the electric rail lines. All OD locations of these three modes were aggregated into transportation analysis zones (TAZ). The major taxi trip destinations were found to be international airports and provincial bus terminals. The significant trip destinations of vans were provincial bus terminals in Bangkok, electric rail stations, and the industrial estates in other provinces of BMR. In contrast, electric rail destinations were electric rail line interchange stations, the central business district (CBD), and commercial office areas. Therefore, these significant destinations of taxis and vans should be considered in electric rail planning to reduce the air pollution from gasoline vehicles (taxis and vans). Using the designed procedures, the up-to-date dataset of public transport can be processed to derive a time series of human mobility as an input into continuous and sustainable public transport planning and performance assessment. Based on the results of the study, the procedures can benefit other cities in Thailand and other countries.


2021 ◽  
Vol 94 ◽  
pp. 103117
Author(s):  
Rongxiang Su ◽  
Jingyi Xiao ◽  
Elizabeth C. McBride ◽  
Konstadinos G. Goulias

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanmo Li ◽  
Mengyang Gu

AbstractThe COVID-19 outbreak is asynchronous in US counties. Mitigating the COVID-19 transmission requires not only the state and federal level order of protective measures such as social distancing and testing, but also public awareness of time-dependent risk and reactions at county and community levels. We propose a robust approach to estimate the heterogeneous progression of SARS-CoV-2 at all US counties having no less than 2 COVID-19 associated deaths, and we use the daily probability of contracting (PoC) SARS-CoV-2 for a susceptible individual to quantify the risk of SARS-CoV-2 transmission in a community. We found that shortening by $$5\%$$ 5 % of the infectious period of SARS-CoV-2 can reduce around $$39\%$$ 39 % (or 78 K, $$95\%$$ 95 % CI: [66 K , 89 K ]) of the COVID-19 associated deaths in the US as of 20 September 2020. Our findings also indicate that reducing infection and deaths by a shortened infectious period is more pronounced for areas with the effective reproduction number close to 1, suggesting that testing should be used along with other mitigation measures, such as social distancing and facial mask-wearing, to reduce the transmission rate. Our deliverable includes a dynamic county-level map for local officials to determine optimal policy responses and for the public to better understand the risk of contracting SARS-CoV-2 on each day.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandru Topîrceanu ◽  
Radu-Emil Precup

AbstractComputational models for large, resurgent epidemics are recognized as a crucial tool for predicting the spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic multiscale population models and by incorporating human mobility patterns. Nevertheless, a large proportion of recent studies, aimed at better understanding global epidemics, like influenza, measles, H1N1, SARS, and COVID-19, underestimate the role of heterogeneous mixing in populations, characterized by strong social structures and geography. Motivated by the reduced tractability of studies employing homogeneous mixing, which make conclusions hard to deduce, we propose a new, very fine-grained model incorporating the spatial distribution of population into geographical settlements, with a hierarchical organization down to the level of households (inside which we assume homogeneous mixing). In addition, population is organized heterogeneously outside households, and we model the movement of individuals using travel distance and frequency parameters for inter- and intra-settlement movement. Discrete event simulation, employing an adapted SIR model with relapse, reproduces important qualitative characteristics of real epidemics, like high variation in size and temporal heterogeneity (e.g., waves), that are challenging to reproduce and to quantify with existing measures. Our results pinpoint an important aspect, that epidemic size is more sensitive to the increase in distance of travel, rather that the frequency of travel. Finally, we discuss implications for the control of epidemics by integrating human mobility restrictions, as well as progressive vaccination of individuals.


Author(s):  
Mostafa Abbas ◽  
Thomas B. Morland ◽  
Eric S. Hall ◽  
Yasser EL-Manzalawy

We utilize functional data analysis techniques to investigate patterns of COVID-19 positivity and mortality in the US and their associations with Google search trends for COVID-19-related symptoms. Specifically, we represent state-level time series data for COVID-19 and Google search trends for symptoms as smoothed functional curves. Given these functional data, we explore the modes of variation in the data using functional principal component analysis (FPCA). We also apply functional clustering analysis to identify patterns of COVID-19 confirmed case and death trajectories across the US. Moreover, we quantify the associations between Google COVID-19 search trends for symptoms and COVID-19 confirmed case and death trajectories using dynamic correlation. Finally, we examine the dynamics of correlations for the top nine Google search trends of symptoms commonly associated with COVID-19 confirmed case and death trajectories. Our results reveal and characterize distinct patterns for COVID-19 spread and mortality across the US. The dynamics of these correlations suggest the feasibility of using Google queries to forecast COVID-19 cases and mortality for up to three weeks in advance. Our results and analysis framework set the stage for the development of predictive models for forecasting COVID-19 confirmed cases and deaths using historical data and Google search trends for nine symptoms associated with both outcomes.


Author(s):  
Mohamed Aziz Bhouri ◽  
Francisco Sahli Costabal ◽  
Hanwen Wang ◽  
Kevin Linka ◽  
Mathias Peirlinck ◽  
...  

Author(s):  
Yun Li ◽  
Moming Li ◽  
Megan Rice ◽  
Haoyuan Zhang ◽  
Dexuan Sha ◽  
...  

Social distancing policies have been regarded as effective in containing the rapid spread of COVID-19. However, there is a limited understanding of policy effectiveness from a spatiotemporal perspective. This study integrates geographical, demographical, and other key factors into a regression-based event study framework, to assess the effectiveness of seven major policies on human mobility and COVID-19 case growth rates, with a spatiotemporal emphasis. Our results demonstrate that stay-at-home orders, workplace closures, and public information campaigns were effective in decreasing the confirmed case growth rate. For stay-at-home orders and workplace closures, these changes were associated with significant decreases (p < 0.05) in mobility. Public information campaigns did not see these same mobility trends, but the growth rate still decreased significantly in all analysis periods (p < 0.01). Stay-at-home orders and international/national travel controls had limited mitigation effects on the death case growth rate (p < 0.1). The relationships between policies, mobility, and epidemiological metrics allowed us to evaluate the effectiveness of each policy and gave us insight into the spatiotemporal patterns and mechanisms by which these measures work. Our analysis will provide policymakers with better knowledge regarding the effectiveness of measures in space–time disaggregation.


Sign in / Sign up

Export Citation Format

Share Document