scholarly journals Low-energy Ar+ and N+ ion beam induced chemical vapor deposition using hexamethyldisilazane for the formation of nitrogen containing SiC and carbon containing SiN films

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259216
Author(s):  
Satoru Yoshimura ◽  
Satoshi Sugimoto ◽  
Takae Takeuchi ◽  
Kensuke Murai ◽  
Masato Kiuchi

We proposed an experimental methodology for producing films on substrates with an ion beam induced chemical vapor deposition (IBICVD) method using hexamethyldisilazane (HMDS) as a source material. In this study, both HMDS and ion beam were simultaneously injected onto a Si substrate. We selected Ar+ and N+ as the ion beam. The energy of the ion beam was 101 eV. Temperature of the Si substrate was set at 540 °C. After the experiments, films were found to be deposited on the substrates. The films were then analyzed by Fourier transform infrared (FTIR) spectroscopy, stylus profilometer, X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results showed that silicon carbide films containing small amount of nitrogen were formed when Ar+ ions were injected in conjunction with HMDS. On the other hand, in the cases of N+ ion beam irradiation, silicon nitride films involving small amount of carbon were formed. It was noted that no film deposition was observed when HMDS alone was supplied to the substrates without any ion beam injections.

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Sandra Rodríguez-Villanueva ◽  
Frank Mendoza ◽  
Alvaro A. Instan ◽  
Ram S. Katiyar ◽  
Brad R. Weiner ◽  
...  

We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy.


2002 ◽  
Vol 17 (7) ◽  
pp. 1820-1833 ◽  
Author(s):  
S. Gupta ◽  
B. R. Weiner ◽  
G. Morell

Nanocrystalline carbon (n-C) thin films were deposited on Mo substrates using methane (CH4) and hydrogen (H2) by the hot-filament chemical vapor deposition (HFCVD) technique. Process parameters relevant to the secondary nucleation rate were systematically varied (0.3–2.0% methane concentrations, 700–900 °C deposition temperatures, and continuous forward and reverse bias during growth) to study the corresponding variations in film microstructure. Standard nondestructive complementary characterization tools such as scanning electron microscopy, x-ray diffraction, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy were utilized to obtain a coherent and comprehensive picture of the microstructure of these films. Through these studies we obtained an integral picture of the material grown and learned how to control key material properties such as surface morphology (faceted versus evenly smooth), grain size (microcrystalline versus nanocrystalline), surface roughness (from rough 150 rms to smooth 70 rms), and bonding configuration (sp3 C versus sp2 C), which result in physical properties relevant for several technological applications. These findings also indicate that there exist fundamental differences between HFCVD and microwave CVD (MWCVD) for methane concentrations above 1%, whereas some similarities are drawn among films grown by ion-beam assisted deposition, HFCVD assisted by low-energy particle bombardment, and MWCVD using noble gas in replacement of traditionally used hydrogen.


2001 ◽  
Vol 16 (6) ◽  
pp. 1838-1849 ◽  
Author(s):  
Kanchana Vydianathan ◽  
Guillermo Nuesca ◽  
Gregory Peterson ◽  
Eric T. Eisenbraun ◽  
Alain E. Kaloyeros ◽  
...  

A chemical vapor deposition process has been developed for titanium dioxide (TiOx) for applications as capacitor dielectric in sub-quarter-micron dynamic random-access memory devices, and as gate insulators in emerging generations of etal-oxide-semiconductor transistors. Studies using the β-diketonate source precursor (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium were carried out to examine the underlying mechanisms that control film nucleation and growth kinetics and to establish the effects of key process parameters on film purity, composition, texture, morphology, and electrical properties. Resulting film properties were thoroughly analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, scanning electron microscopy (SEM), focused-ion-beam SEM, and capacitance–voltage (C–V) measurements. The study resulted in the identification of an optimized process for the deposition of an anatase–rutile TiOx film with a dielectric constant approximately 85 at 1 MHz for a 330-nm thickness, and a leakage current below 2 × 10−8 A/cm2 for bias voltage values up to 3.5 V.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


1995 ◽  
Vol 377 ◽  
Author(s):  
G. Stevens ◽  
P. Santos-Filho ◽  
S. Habermehl ◽  
G. Lucovsky

ABSTRACTWe have deposited Si-nitride thin films by remote plasma-enhanced chemical-vapor deposition using different combinations of hydrogen and deuterium source gases. In one set of experiments, NH3 and SiH4 were injected downstream from a He plasma and the ratio of NH3 to SiH4 was adjusted so that deposited films contained IR-detectable bonded-H in SiN-H arrangements, but not in Si-H arrangements. Similar results were obtained using the same ND3 to SiD4 flow ratio; these films contained only SiN-D groups. However, films prepared from ND3 and SiH4 displayed both SiN-D and SiN-H groups in essentially equal concentrations establishing that H and D atoms bonded to N are derived from both source gases SiH (D) 4 and NH (D) 3, and further that inter-mixing of H and/or D atoms occurs at the growth surface. This reaction pathway is supported by additional studies in which films were grown from SD4 and ND3 with either i) He or ii) He/H2 mixtures being plasma excited. The films grown from the deuterated source gases without H2, displayed only SiN-D bands, whereas the films grown using the He/H2 mixture displayed both SiN-H and SiN-D bands. The total concentration of N-H and N-D bonds in the films grown from the He/H2 excitation was the same as the concentration of N-D, supporting the surface reaction model. In-situ mass spectrometry provides additional insights in the film deposition reactions.


2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


2005 ◽  
Vol 872 ◽  
Author(s):  
John M. Maloney ◽  
Sara A. Lipka ◽  
Samuel P. Baldwin

AbstractLow pressure chemical vapor deposition (LPCVD) and plasma enhanced chemical vapor deposition (PECVD) silicon oxide and silicon nitride films were implanted subcutaneously in a rat model to study in vivo behavior of the films. Silicon chips coated with the films of interest were implanted for up to one year, and film thickness was evaluated by spectrophotometry and sectioning. Dissolution rates were estimated to be 0.33 nm/day for LPCVD silicon nitride, 2.0 nm/day for PECVD silicon nitride, and 3.5 nm/day for PECVD silicon oxide. A similar PECVD silicon oxide dissolution rate was observed on a silicon oxide / silicon nitride / silicon oxide stack that was sectioned by focused ion beam etching. These results provide a biostability reference for designing implantable microfabricated devices that feature exposed ceramic films.


Sign in / Sign up

Export Citation Format

Share Document