scholarly journals Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina

2021 ◽  
Vol 17 (1) ◽  
pp. e1009161 ◽  
Author(s):  
Diego S. Ojeda ◽  
María Mora Gonzalez Lopez Ledesma ◽  
Horacio M. Pallarés ◽  
Guadalupe S. Costa Navarro ◽  
Lautaro Sanchez ◽  
...  

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.

2002 ◽  
Vol 70 (2) ◽  
pp. 820-825 ◽  
Author(s):  
Niklas Ahlborg ◽  
Irene T. Ling ◽  
Wendy Howard ◽  
Anthony A. Holder ◽  
Eleanor M. Riley

ABSTRACT Vaccination of mice with the 42-kDa region of Plasmodium yoelii merozoite surface protein 1 (MSP142) or its 19-kDa C-terminal processing product (MSP119) can elicit protective antibody responses in mice. To investigate if the 33-kDa N-terminal fragment (MSP133) of MSP142 also induces protection, the gene segment encoding MSP133 was expressed as a glutathione S-transferase (GST) fusion protein. C57BL/6 and BALB/c mice were immunized with GST-MSP133 and subsequently challenged with the lethal P. yoelii YM blood stage parasite. GST-MSP133 failed to induce protection, and all mice developed patent parasitemia at a level similar to that in naive or control (GST-immunized) mice; mice immunized with GST-MSP119 were protected, as has been shown previously. Specific prechallenge immunoglobulin G (IgG) antibody responses to MSP1 were analyzed by enzyme-linked immunosorbent assay and immunofluorescence. Despite being unprotected, several mice immunized with MSP133 had antibody titers (of all IgG subclasses) that were comparable to or higher than those in mice that were protected following immunization with MSP119. The finding that P. yoelii MSP133 elicits strong but nonprotective antibody responses may have implications for the design of vaccines for humans based on Plasmodium falciparum or Plasmodium vivax MSP142.


1998 ◽  
Vol 5 (4) ◽  
pp. 479-485 ◽  
Author(s):  
Dan M. Granoff ◽  
Susan E. Maslanka ◽  
George M. Carlone ◽  
Brian D. Plikaytis ◽  
George F. Santos ◽  
...  

ABSTRACT The standardized enzyme-linked immunosorbent assay (ELISA) for measurement of serum immunoglobulin G (IgG) antibody responses to meningococcal C polysaccharide has been modified to employ assay conditions that ensure specificity and favor detection primarily of high-avidity antibodies. The modified and standard assays were used to measure IgG antibody concentrations in sera of toddlers vaccinated with meningococcal polysaccharide vaccine or a meningococcal C conjugate vaccine. The results were compared to the respective complement-mediated bactericidal antibody titers. In sera obtained after one or two doses of vaccine, the correlation coefficients, r, for the results of the standard assay and bactericidal antibody titers were 0.45 and 0.29, compared to 0.85 and 0.87, respectively, for the modified assay. With the standard assay, there were no significant differences between the geometric mean antibody responses of the two vaccine groups. In contrast, with the modified assay, 5- to 20-fold higher postvaccination antibody concentrations were measured in the conjugate than in the polysaccharide group. Importantly, the results of the modified assay, but not the standard ELISA, paralleled the respective geometric mean bactericidal antibody titers. Thus, by employing conditions that favor detection of higher-avidity IgG antibody, the modified ELISA provides results that correlate closely with measurements of antibody functional activity that are thought to be important in protection against meningococcal disease.


2004 ◽  
Vol 78 (17) ◽  
pp. 9190-9202 ◽  
Author(s):  
J. D. Trujillo ◽  
N. M. Kumpula-McWhirter ◽  
K. J. Hötzel ◽  
M. Gonzalez ◽  
W. P. Cheevers

ABSTRACT This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 μg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.


2004 ◽  
Vol 11 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Marli S. P. Azevedo ◽  
Lijuan Yuan ◽  
Cristiana Iosef ◽  
Kyeong-Ok Chang ◽  
Yunjeong Kim ◽  
...  

ABSTRACT A sequential mucosal prime-boost vaccine regimen of oral attenuated (Att) human rotavirus (HRV) priming followed by intranasal (i.n.) boosting with rotavirus protein VP2 and VP6 rotavirus-like particles (2/6-VLPs) has previously been shown to be effective for induction of intestinal antibody-secreting cell (ASC) responses and protection in gnotobiotic pigs. Because serum or fecal antibody titers, but not intestinal ASC responses, can be used as potential markers of protective immunity in clinical vaccine trials, we determined the serum and intestinal antibody responses to this prime-boost rotavirus vaccine regimen and the correlations with protection. Gnotobiotic pigs were vaccinated with one of the two sequential vaccines: AttHRV orally preceding 2/6-VLP (VLP2x) vaccination (AttHRV/VLP2x) or following VLP2x vaccination (VLP2x/AttHRV) given i.n. with a mutant Escherichia coli heat-labile toxin (mLT) as adjuvant. These vaccines were also compared with three i.n. doses of VLP+mLT (VLP3x) and one and three oral doses of AttHRV (AttHRV1x and AttHRV3x, respectively). Before challenge all pigs in the AttHRV/VLP2x group seroconverted to positivity for serum immunoglobulin A (IgA) antibodies. The pigs in this group also had significantly higher (P < 0.05) intestinal IgA antibody titers pre- and postchallenge and IgG antibody titers postchallenge compared to those in the other groups. Statistical analyses of the correlations between serum IgM, IgA, IgG, and virus-neutralizing antibody titers and protection demonstrated that each of these was an indicator of protective immunity induced by the AttHRV3x and the AttHRV/VLP2x regimens. However, only IgA and not IgM or IgG antibody titers in serum were highly correlated (R 2 = 0.89; P < 0.001) with the corresponding isotype antibody (IgA) titers in the intestines among all the vaccinated groups, indicating that the IgA antibody titer is probably the most reliable indicator of protection.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 964
Author(s):  
Kelsey A. Pilewski ◽  
Kevin J. Kramer ◽  
Ivelin S. Georgiev

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


PEDIATRICS ◽  
1956 ◽  
Vol 17 (4) ◽  
pp. 489-502
Author(s):  
C. Arden Miller ◽  
Margaret F. Lenahan

The neutralizing antibody responses of 52 asymptomatic household contacts of patients with poliomyelitis were studied by the metabolic inhibition method. Half of these contacts were fecal carriers of poliomyelitis virus. For purposes of comparison the antibody responses of 25 patients with paralytic poliomyelitis, all fecal virus carriers, were studied. The errors of replication of the test procedure were determined by duplicate testing of 51 serums. Duplicate testing of serum specimens indicated disagreement regarding the presence or absence of antibody in 6.0 to 8.0 per cent of the serums. The second test gave antibody titers which disagreed with those from the first test by a factor of fourfold or more 37.0 per cent of the time; errors occurred equally in either direction. Half of all persons studied showed an increase of fourfold or more in the antibody titers of paired serums; this was 3 to 4 times as many as would be expected by chance. It was not possible to distinguish the antibody responses of paralyzed patients from asymptomatic household contacts; or the fecal virus carriers from the nonvirus carriers in the latter group. Four virus carriers who did not have homologous antibody in convalescent serums were found. By repeat testing homologous antibody was found in all but one of these. The limitations of the test procedure as a diagnostic tool are discussed.


2001 ◽  
Vol 8 (2) ◽  
pp. 266-272 ◽  
Author(s):  
Nelydia F. Concepcion ◽  
Carl E. Frasch

ABSTRACT The specificity of the immune response to the 23-valent pneumococcal-polysaccharide (PS) vaccine in healthy adults and to a pneumococcal conjugate vaccine in infants was examined by measuring immunoglobulin G (IgG) antibody titers by enzyme-linked immunosorbent assay (ELISA) and the opsonophagocytosis assay. ELISA measures total antipneumococcal IgG titers including the titers of functional and nonfunctional antibodies, while the opsonophagocytosis assay measures only functional-antibody titers. Twenty-four pairs of pre- and post-pneumococcal vaccination sera from adults were evaluated (ELISA) for levels of IgG antibodies against serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F. Twelve of the pairs were also examined (opsonophagocytosis assay) for their functional activities. The correlation coefficients between assay results for most types ranged from 0.75 to 0.90, but the correlation coefficient was only about 0.6 for serotypes 4 and 19F. The specificities of these antibodies were further examined by the use of competitive ELISA inhibition. A number of heterologous polysaccharides (types 11A, 12F, 15B, 22F, and 33A) were used as inhibitors. Most of the sera tested showed cross-reacting antibodies, in addition to those removed by pneumococcal C PS absorption. Our data suggest the presence of a common epitope that is found on most pneumococcal PS but that is not absorbed by purified C PS. Use of a heterologous pneumococcal PS (22F) to adsorb the antibodies to the common epitope increased the correlation between the IgG ELISA results and the opsonophagocytosis assay results. The correlation coefficient improve from 0.66 to 0.92 for type 4 and from 0.63 to 0.80 for type 19F. These common-epitope antibodies were largely absent in infants at 7 months of age, suggesting the carbohydrate nature of the epitope.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 810-818 ◽  
Author(s):  
HC Chiu ◽  
AK Rao ◽  
C Beckett ◽  
RW Colman

Abstract An 82-year-old woman presented with extensive hematomas and melena associated with markedly decreased plasma factor V coagulant activity (FV:C). Using a competitive enzyme-linked immunosorbent assay developed in our laboratory, we made serial measurements of factor V antigen (FV:Ag) in plasma and found it to be normal or elevated. The patient's plasma was demonstrated to contain an IgG antibody that could neutralize FV:C in normal plasma. The antibody was of restricted heterogeneity (IgG1, IgG2,kappa). Circulating immune complexes containing antibody to factor V and FV:Ag were demonstrated directly in the plasma by immunoelectrophoresis with polyclonal monospecific antibody and with a monoclonal antibody using an enzyme-linked immunosorbent assay. Presence of neutralizing antibody could be demonstrated in vitro even at times when FV:C was within normal limits by heat inactivation of FV:C. Treatment with plasma and platelet transfusions as well as plasmapheresis induced definite but transient elevation of FV:C. Steroid therapy lowered the neutralizing antibody concentration and produced a rapid and persistent elevation of FV:C during two separate hospitalizations. This report describes a patient in whom levels of FV:Ag have been serially measured, and the presence of circulating immune complexes consisting of factor V and a neutralizing antibody have been directly demonstrated.


2020 ◽  
Vol 223 (1) ◽  
pp. 47-55 ◽  
Author(s):  
William T Lee ◽  
Roxanne C Girardin ◽  
Alan P Dupuis ◽  
Karen E Kulas ◽  
Anne F Payne ◽  
...  

Abstract Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration’s (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31–35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (&gt;960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


Sign in / Sign up

Export Citation Format

Share Document