scholarly journals Hantavirus infection-induced B cell activation elevates free light chains levels in circulation

2021 ◽  
Vol 17 (8) ◽  
pp. e1009843
Author(s):  
Jussi Hepojoki ◽  
Luz E. Cabrera ◽  
Satu Hepojoki ◽  
Carla Bellomo ◽  
Lauri Kareinen ◽  
...  

In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients’ peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4775-4775
Author(s):  
Nino Porakishvili ◽  
Maria Manoussaka ◽  
Nino Kulikova ◽  
James Walton ◽  
Amit Nathwani ◽  
...  

Abstract Introduction: We have previously shown that Toll-like receptor RP105 (CD180) is heterogeneously expressed on B-CLL cells and that the ligation of CD180 by monoclonal antibodies (mAb) on CD180+ B-CLL cells resulted in delineation of responder and non-responder B-CLL clones [1]. In this study we have examined the role of IL-4 together with CD180 and CD40 as activation signals. Methods: Blood mononuclear cells were separated from 7 responder B-CLL patients with both mutated and unmutated Ig Vh genes and 11 controls and were cultured for 72 hours in optimum concentrations of anti-CD180 (G28-8) or anti-CD40 mAb or both in presence and absence of 15 ng/ml of IL-4. CD19+ B cells were stained with mAb to the activation marker CD86 or cell cycle protein Ki-67, measured by flow cytometry and expressed as Mean Fluorescence Intensity (MFI) or % of Ki-67+ cells. Results: B-CLL cells and normal control B cells responded to CD180-ligation by activation and proliferation (Table). Higher levels of CD86 and Ki67 were detected when both anti CD40 mAb and anti CD180 mAb were added (p<0.05) compared with either alone. IL4 alone induced both activation and proliferation of control cells and this was even higher with the leukemic cells (p<0.01) confirming that IL-4 also provides a strong survival/activatory stimulus for B-CLL cells. Addition of IL-4 had no significant enhancing effect on normal B-cells stimulated with both anti-CD180 and anti-CD40, although IL-4 synergised with anti-CD40 in B cell activation (p=0.026) and with CD180 in B cell proliferation (p=0.044). Conclusion: CD180 had an additive effect with CD40 ligation in activation and proliferation of both B-CLL cells and normal control B cells. IL-4 provides a strong additional stimulus for B-CLL cells. CD86 and Ki-67 expression by CD19+ cells CD86 Ki67 B-CLL Control B-CLL control Spontaneous −IL-4 7.2±4.1 4.0±1.0 8.1±2.7 17.4±2.3 +IL-4 22.4±11.8 11.2±4.2 17.0±12.8 23.6±14.8 CD180 −IL-4 14.7±5.8 26.9±13.0 17.1±10.9 28.1±12.0 +IL-4 35.4±14.5 30.0±14.6 26.9±25.6 48.3±9.7 CD40 −IL-4 19.4±8.8 14.8±5.2 14.9±9.7 34.0±5.1 +IL-4 286±145.5 44.0±19.4 52.7±22.8 41.0±19.8 CD180+CD40 −IL-4 32.5±12.6 97.0±26.2 28.0±10.4 65.5±26.6 +IL-4 299±163.2 63.5±27.4 49.3±14.6 55.5±26.4


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 707-707 ◽  
Author(s):  
Melania Capasso ◽  
Mandeep K Bhamrah ◽  
Robert S Boyd ◽  
Kelvin Cain ◽  
Karen Pulford ◽  
...  

Abstract HVCN1 is a highly-conserved voltage-gated proton channel. Voltage-gated proton currents have been recorded in lymphocytes but their functions in B cells remain unknown. We isolated HVCN1 in a proteomic survey of plasma membrane proteins in mantle cell lymphoma (MCL) in leukemic phase. In normal lymphocytes, HVCN1 expression was restricted to the B-cell lineage; HVCN1 was highly expressed in mantle zone cells but down-regulated in germinal center (GC) cells undergoing receptor affinity maturation and class-switch recombination (CSR). Highest level expression was also observed in Chronic Lymphocytic Leukemia (CLL) cells from the peripheral blood. In MCL tumors, HVCN1 was expressed in circulating cells but absent from involved lymph nodes, whereas in diffuse large B cell lymphoma (DLBCL), its expression correlated with cases with a low proliferation index. Thus, in both primary and neoplastic B cells, HVCN1 expression appears to be associated with a non-proliferative phenotype. In human primary resting B cells and B cell lines, HVCN1 directly interacted with the B cell receptor (BCR) complex, as shown by Igβ and HVCN1 reciprocal immunoprecipitation experiments. We also found by confocal microscopy and subcellular fractionation, that upon BCR engagement the channel was internalized with the antigen receptor and the two proteins co-migrated to the endo-lysosomal, MHC class II (MHC-II) containing compartments (MIICs). When overexpressed in a hen egg lysozyme (HEL)-specific B cell clone, LK35.2, HVCN1 showed a basal phosphorylation which increased with HEL stimulation. The increased phosphorylation corresponded to an increase in proton conductance, termed “enhanced gating mode” and it was PKC dependent. We then asked whether HVCN1 over-expression could influence MHC II antigen presentation and if the effect could be mediated by changes in MIICs pH. Indeed, presentation of HEL peptides to a T cell clone was impaired in LK35.2 and A20 D1.3 cells, where HVCN1 had been re-introduced; effect was stronger for plate-bound antigen than for soluble antigen. The reduced antigen presentation was accompanied by an increase in endo-lysosomal pH, from pH4.9 ± 0.2 to 6.3 ± 0.1 (which may reflect HVCN1 channel-mediated proton flux out of the organelles), as measured with an anti-IgM antibody conjugated to a pH sensitive dye in HVCN1 over-expressing cells. Evidently, the presence of HVCN1 leads to increased endo-lysosomal pH, consistent with H+ current from the lysosomal compartment into the cytosol. Hence, active antigen presenting cells, like GC cells, might down-regulate HVCN1 expression to maximize the effect of antigen presentation. In order to investigate the role of HVCN1 in vivo, we used a HVCN1-deficient mouse line generated by genetrap insertion. These mice showed no obvious changes in numbers or composition of B-cell subpopulations. Immunization of HVCN1-deficient mice with a T-dependent antigen resulted in a defect in CSR to all IgG subclasses, particularly marked for the IgG2b, whereas in contrast, no differences were observed in IgM secretion, suggesting a pivotal role for HVCN1 during antigen-driven B-cell activation and subsequent CSR. HVCN1 may influence B-cell activation through alteration of reactive oxygen species (ROS) as HVCN1-deficient B cells showed reduced ROS production following BCR activation, a sign of suboptimal NADPH oxidase activity. It has been postulated that proton channels are required to counterbalance the electrogenic activity of NADPH oxidase during ROS production. Our data suggest that this mechanism also occurs in vivo and shed new light on the role of ROS in B cell activation and downstream effects.


2020 ◽  
Vol 7 (2) ◽  
pp. e669 ◽  
Author(s):  
Klaus Lehmann-Horn ◽  
Sarosh R. Irani ◽  
Shengzhi Wang ◽  
Arumugam Palanichamy ◽  
Sarah Jahn ◽  
...  

ObjectiveTo study intrathecal B-cell activity in leucine-rich, glioma-inactivated 1 (LGI1) antibody encephalitis. In patients with LGI1 antibodies, the lack of CSF lymphocytosis or oligoclonal bands and serum-predominant LGI1 antibodies suggests a peripherally initiated immune response. However, it is unknown whether B cells within the CNS contribute to the ongoing pathogenesis of LGI1 antibody encephalitis.MethodsPaired CSF and peripheral blood (PB) mononuclear cells were collected from 6 patients with LGI1 antibody encephalitis and 2 patients with other neurologic diseases. Deep B-cell immune repertoire sequencing was performed on immunoglobulin heavy chain transcripts from CSF B cells and sorted PB B-cell subsets. In addition, LGI1 antibody levels were determined in CSF and PB.ResultsSerum LGI1 antibody titers were on average 127-fold higher than CSF LGI1 antibody titers. Yet, deep B-cell repertoire analysis demonstrated a restricted CSF repertoire with frequent extensive clusters of clonally related B cells connected to mature PB B cells. These clusters showed intensive mutational activity of CSF B cells, providing strong evidence for an independent CNS-based antigen-driven response in patients with LGI1 antibody encephalitis but not in controls.ConclusionsOur results demonstrate that intrathecal immunoglobulin repertoire expansion is a feature of LGI1 antibody encephalitis and suggests a need for CNS-penetrant therapies.


2004 ◽  
Vol 78 (18) ◽  
pp. 9918-9923 ◽  
Author(s):  
Lixin Yang ◽  
Masayuki Hakoda ◽  
Kazuya Iwabuchi ◽  
Tsuyoshi Takeda ◽  
Takao Koike ◽  
...  

ABSTRACT B-cell antigen receptor signaling is initiated upon binding of the antigen to membrane-bound immunoblobulin (Ig), and the anti-Ig antibody (Ab) mimics this signaling. In B cells latently infected with Epstein-Barr virus (EBV), the same signals induce virus activation. We examine here whether rheumatoid factors (RFs), autoantibodies directed against the Fc portion of IgG, induce EBV and B-cell activation. As a source of RFs, RF-producing lymphoblastoid cell line (LCL) clones were isolated from peripheral blood mononuclear cells (PBMC) and synovial cells from patients with rheumatoid arthritis (RA) by EBV transformation. Burkitt's lymphoma-derived Akata cells, which are highly responsive to EBV activation by anti-Ig Abs, were used for the assay of EBV activation. Akata cells expressed IgG3 as membrane-bound Ig. RFs from a synovium-derived LCL were directed to IgG3 and induced EBV activation in 16 to 18% of Akata cells, whereas RFs from another synovium-derived LCL were directed to IgG1 and did not induce EBV activation. Pretreatment of RFs with the purified Fc fragment of human IgG completely abolished EBV activation. Furthermore, B-cell activation was assessed by incorporation of [3H]thymidine. RFs from synovium-derived LCLs efficiently induced B-cell activation, and the addition of CD40 ligand had a synergistic effect. On the other hand, RFs from PBMC-derived LCLs were polyreactive, had a lower affinity to IgG, and did not induce EBV and B-cell activation. The present findings imply a possible role for RFs as EBV and B-cell activators.


2018 ◽  
Vol 71 (7) ◽  
pp. 620-625 ◽  
Author(s):  
Silvia Bosello ◽  
Umberto Basile ◽  
Enrico De Lorenzis ◽  
Francesca Gulli ◽  
Giovanni Canestrari ◽  
...  

AimHumoral immunity and B cells are thought to play an important role in the pathophysiology of the systemic sclerosis (SSc). The production of free light chains (FLC) of immunoglobulins is abnormally high in several pathological autoimmune conditions and reflects B cell activation. Furthermore, FLCs demonstrated different biological activities including their capability to modulate the immune system, proteolytic activity and complement cascade activation. The aims of this study are to determine the FLC levels in patients with SSc compared with healthy controls (HC) and to study their possible association with organ involvement and disease characteristics.MethodsSixty-five patients with SSc and 20 HC were studied. Clinical and immunological inflammatory characteristics were assessed for all the patients with SSc. κ-FLC and λ-FLC, interleukin 6 (IL-6) and B cell activating factor levels were measured.ResultsThe mean serum κ-FLC levels and FLC ratio were significantly higher in patients with SSc compared with HC, while the serum λ-FLC levels were comparable.The levels of FLC were comparable in patients with diffuse skin disease and limited skin involvement, while κ-FLC levels were increased in patients with restrictive lung (forced vital capacity (FVC) <80%) disease (26.4±7.4 mg/L) when compared with patients with FVC ≥80% (19.6±7.3 mg/L, P=0.009). In patients with SSc, the levels of serum κ-FLC level directly correlated with the IL-6 levels (R=0.3, P=0.001) and disease activity (R=0.4, P=0.003).ConclusionsFLC levels are elevated in SSc and high levels are associated with lung involvement and with a higher degree of inflammation, supporting a possible role of B cell activation in the pathophysiology of the disease.


Author(s):  
Aurélie De Groof ◽  
Julie Ducreux ◽  
Floor Aleva ◽  
Andrew J Long ◽  
Alina Ferster ◽  
...  

Abstract Objective Type I IFNs play a well-known role in the pathogenesis of SLE, through activation of CD4 T and antigen-presenting cells. Here, we investigated the effects of IFN alpha (IFNα) on SLE B cell activation and differentiation. Methods Peripheral blood mononuclear cells (PBMCs) and purified total or naïve B cells were obtained from healthy controls and SLE patients. The effects of IFNα on B cell differentiation were studied by flow cytometry. The role of STAT3 in B cell responses to IFNα was studied using pharmacological inhibitors and PBMCs from STAT3-deficient individuals. Results Incubation of normal PBMCs with IFNα induces a B cell differentiation pattern as observed spontaneously in SLE PBMCs. IFNα displays direct stimulatory effects on purified naïve B cells from healthy individuals, as evidenced by a significant induction of cell surface CD38 and CD95 in the presence of the cytokine. In purified naïve B cells, IFNα also induces STAT3 phosphorylation. IFNα-induced naïve B cell differentiation in total PBMCs is significantly inhibited in the presence of STAT3 inhibitors, or in PBMCs from individuals with STAT3 loss of function mutations. Spontaneous levels of STAT3, but not STAT1, phosphorylation are significantly higher in total B cells from SLE patients compared with controls. Pharmacological STAT3 inhibition in SLE PBMCs inhibits naïve B cell activation and differentiation. Conclusion IFNα displays direct stimulatory effects on B cell differentiation and activation in SLE. STAT3 phosphorylation mediates the effects of IFNα stimulation in naïve B cells, an observation that opens new therapeutic perspectives in SLE.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hector Rincon-Arevalo ◽  
Annika Wiedemann ◽  
Ana-Luisa Stefanski ◽  
Marie Lettau ◽  
Franziska Szelinski ◽  
...  

Circulating CD11c+ B cells are a key phenomenon in certain types of autoimmunity but have also been described in the context of regular immune responses (i.e., infections, vaccination). Using mass cytometry to profile 46 different markers on individual immune cells, we systematically initially confirmed the presence of increased CD11c+ B cells in the blood of systemic lupus erythematosus (SLE) patients. Notably, significant differences in the expression of CD21, CD27, and CD38 became apparent between CD11c− and CD11c+ B cells. We observed direct correlation of the frequency of CD21−CD27− B cells and CD21−CD38− B cells with CD11c+ B cells, which were most pronounced in SLE compared to primary Sjögren's syndrome patients (pSS) and healthy donors (HD). Thus, CD11c+ B cells resided mainly within memory subsets and were enriched in CD27−IgD−, CD21−CD27−, and CD21−CD38− B cell phenotypes. CD11c+ B cells from all donor groups (SLE, pSS, and HD) showed enhanced CD69, Ki-67, CD45RO, CD45RA, and CD19 expression, whereas the membrane expression of CXCR5 and CD21 were diminished. Notably, SLE CD11c+ B cells showed enhanced expression of the checkpoint molecules CD86, PD1, PDL1, CD137, VISTA, and CTLA-4 compared to HD. The substantial increase of CD11c+ B cells with a CD21− phenotype co-expressing distinct activation and checkpoint markers, points to a quantitative increased alternate (extrafollicular) B cell activation route possibly related to abnormal immune regulation as seen under the striking inflammatory conditions of SLE which shows a characteristic PD-1/PD-L1 upregulation.


Sign in / Sign up

Export Citation Format

Share Document