scholarly journals Influence of soil tillage system, forecrop and kind of crop residue on spring barley infection by pathogenic fungi

2013 ◽  
Vol 53 (1) ◽  
2014 ◽  
Vol 153 (5) ◽  
pp. 862-875 ◽  
Author(s):  
J. BRENNAN ◽  
P. D. FORRISTAL ◽  
T. McCABE ◽  
R. HACKETT

SUMMARYField experiments were conducted between 2009 and 2011 in Ireland to compare the effects of soil tillage systems on the grain yield, nitrogen use efficiency (NUE) and nitrogen (N) uptake patterns of spring barley (Hordeum vulgare) in a cool Atlantic climate. The four tillage treatments comprised conventional tillage in spring (CT), reduced tillage in autumn (RT A), reduced tillage in spring (RT S) and reduced tillage in autumn and spring (RT A+S). Each tillage system was evaluated with five levels of fertilizer N (0, 75, 105, 135 and 165 kg N/ha). Grain yield varied between years but CT had a significantly higher mean yield over the three years than the RT systems. There was no significant difference between the three RT systems. Tillage system had no significant effect on the grain yield response to fertilizer N. As a result of the higher yields achieved, the CT system had a higher NUE than the RT systems at all N rates. There was no significant difference in NUE between the three RT systems. Conventional tillage had significantly higher nitrogen uptake efficiency (NUpE) than RT A and a significantly higher nitrogen utilization efficiency (NUtE) than all three RT systems. Crop N uptake followed a similar pattern each year. Large amounts of N were accumulated during the vegetative growth stages while N was lost after anthesis. Increased N rates had a positive effect on N uptake in the early growth stages but tended to promote N loss later in the season. The CT system had the highest N uptake in the initial growth stages but its rate of uptake diminished at a faster rate than the RT systems as the season progressed. Tillage system had an inconsistent effect on crop N content during the later growth stages. On the basis of these results it is concluded that the use of non-inversion tillage systems for spring barley establishment in a cool oceanic climate remains challenging and in certain conditions may result in a reduction in NUE and lower and more variable grain yields than conventional plough-based systems.


2020 ◽  
Vol 50 (5) ◽  
pp. 19-27
Author(s):  
V. N. Timofeev ◽  
O. A. Vyushina

The effect of the use of herbicide mixtures on the reduction of weeds and preservation of barley yield was studied. The experiment (2018–2019) was carried out on dark gray forest soil in the foreststeppe conditions ofTyumenregion. The experiment included two types of basic tillage: moldboard (plowing with a Lemken rotary plow at 20–22 cm) and non-moldboard (tillage with a Smaragd unit at 12–14 cm). The object of research was spring barley, Abalak variety. Biological effectiveness of herbicides, regardless of the soil tillage system, was 94–97% against dicotyledonous weeds, and 80–100% – against cereal and perennial weeds. Efficiency against the entire weed component reached 95–97.5% in 1 month after the application of herbicides, and 96–99% at the end of the growing season. The effectiveness of the use of preparations against cereal weeds was 80–90%, and the effectiveness of herbicides against dicotyledonous weeds – 97–99%. The reduction in the mass of weeds was 90–99%, mostly due to non-moldboard soil tillage. The yield level in the years of research largely depended on the soil tillage with a difference of 0.3–0.4 t in favor of moldboard system and the complex of herbicides applied. A high increase in the yield was provided by a mixture of herbicides Esteron, Speaker + Avantix Extra, Primadonna + Granat + Ovsyugen Super, which amounted to 1.16–1.22 t/ha. The application of comprehensive protection means increased the grain harvest by 1.7 t/ha.


2019 ◽  
Vol 49 (3) ◽  
pp. 16-23
Author(s):  
A. L. Pakul ◽  
N. A. Lapshinov ◽  
G. V. Bozhanova ◽  
V. N. Pakul

The paper presents the results of research into the effect of different soil tillage systems on soil density and structure. The research was conducted in a long-term stationary experiment on the crops of Nikita spring barley. The soil of the experimental plot is classifi ed as leached, mediumtextured, medium-humus, heavy-loam chernozem. The following soil tillage systems with peas as a forecrop were studied: deep moldboard, deep combined, minimum combined and zero. The years of research (2015-2018) differed in heat availability and amount of precipitation. This allowed to study and carry out comparative assessment of the effect of various soil tillage systems of leached chernozem on agrophysical properties of soil. Yearly weather conditions had no signifi cant effect on soil density with all the studied soil tillage systems in single and binary crops of spring barley, whereby the indicators varied from 1.87 to 6.72%. Compared to deep moldboard tillage (control), there was an increase in soil density with zero tillage in singlecrop sowings of spring barley by 6.2%, and in binary crops – by 9.4%. However, the indices were not beyond optimum values of 1.02-1.05 g/ cm3. The optimum equilibrium soil density for the main subtypes of chernozems is 1.0-1.25 g/cm3. Minimum combined soil tillage system resulted in the stable content of valuable structural soil units 0.25-10 mm both in single-crop and binary sowings of spring barley at 68.3% and 68.9%, and the coeffi cient of soil structural properties – 2.15 and 2.21 respectively. It was established that the effect of soil tillage system on the creation of valuable structural units in soil was 21.4%, yearly weather conditions – 11.8%, type of crops – 25.5%.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Felicia Chețan ◽  
Cornel Chețan ◽  
Ileana Bogdan ◽  
Adrian Ioan Pop ◽  
Paula Ioana Moraru ◽  
...  

The regional agroecological conditions, specific to the Transylvanian Plain, are favorable to soybean crops, but microclimate changes related to global warming have imposed the need for agrotechnical adaptive measures in order to maintain the level of soybean yield. In this study, we consider the effect of two soil tillage systems, the seeding rate, as well as the fertilizer dosage and time of application on the yield and quality of soybean crops. A multifactorial experiment was carried out through the A × B × C × D − R: 3 × 2 × 3 × 3 − 2 formula, where A represents the year (a1, 2017; a2, 2018; and a3, 2019); B represents the soil tillage system (b1, conventional tillage with mouldboard plough; b2, reduced tillage with chisel cultivator); C represents the fertilizer variants (c1, unfertilized; c2, one single rate of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus; and c3, two rates of fertilization: 40 kg ha−1 of nitrogen + 40 kg ha−1 of phosphorus (at sowing) + 46 kg ha−1 of nitrogen at V3 stage); D represents the seeding rate (1 = 45 germinating grains (gg) m−2; d2 = 55 gg m−2; and d3 = 65 gg m−2); and R represents the replicates (r1 = the first and r2 = the second). Tillage had no effect, the climate specific of the years and fertilization affected the yield and the quality parameters. Regarding the soybean yield, it reacted favorably to a higher seeding rate (55–65 gg m−2) and two rates of fertilization. The qualitative characteristics of soybeans are affected by the fertilization rates applied to the crop, which influence the protein and fiber content in the soybean grains. Higher values of protein content were recorded with a reduced tillage system, i.e., 38.90 g kg−1 DM in the variant with one single rate of fertilization at a seeding rate of 45 gg per m−2 and 38.72 g kg−1 DM in the variant with two fertilizations at a seeding rate of 65 gg m−2.


2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


Author(s):  
Tomáš Středa ◽  
Vítězslav Vlček ◽  
Jaroslav Rožnovský

Reduction of amount CO2 is possible by carbon sequestration to the soil. Fixation potential of EU–15 agricultural land is c. 16–19 mil t C . year−1. Amount and composition of post–harvest residues is essential for carbon soil sequestration. Long–term yield series of the most planted crops (winter wheat – Triticum aestivum, spring barley – Hordeum vulgare, corn and silage maize – Zea mays, winter rape – Brassica napus, potatoes – Solanum tuberosum, sugar beet – Beta vulgaris, alfalfa – Medicago sativa, red clover – Trifolium pratense, white mustard – Sinapis alba and fiddleneck – Phacelia tanacetifolia) in various agroecological conditions and growing technologies were used for carbon balance calculation. The carbon balances were calculated for main crop rotations of maize, sugar beet, cereal and potato production regions (24 crop rotations). The calculations were realized for following planting varieties: traditional, commercial, ecological and with higher rate of winter rape. All chosen crop rotations (except seven) have positive carbon balance in the tillage system. Amount of fixed carbon might be increases about 30% by the use of no–tillage system. Least amount of carbon is fixed by potatoes, high amount by cereals, alfalfa and sugar beet. For a short time (months) the crops sequestration of carbon is relatively high (to 4.4 t . ha−1 . year−1) or to 5.7 t . ha−1 . year−1 for no–tillage system. From the long time viewpoint (tens of years) the data of humified carbon in arable soil (max 400 kg C . ha−1 . year−1) are important. Maximal carbon deficit of chosen crop rotation is 725 kg C . year−1.


2000 ◽  
Vol 9 (3) ◽  
pp. 201-216 ◽  
Author(s):  
R. LEMOLA ◽  
E. TURTOLA ◽  
C. ERIKSSON

Nitrogen (N) leaching from spring barley with and without undersown Italian ryegrass was studied in Jokioinen, south-western Finland during five years (summer 1993–spring 1998) in 1.7 m deep lysimeters (Ø0.9 m) filled to 1.1 m with clay, silt, sand and peat soil. Tillage was performed in mid- October or in May, before sowing of the barley and ryegrass for the next season. In the second, third and fourth years of the experiment, total N leaching from barley without undersown ryegrass was 15, 7.9,32 and 38 kg ha-1 y-1 in clay, silt, sand and peat soil, respectively. Undersowing reduced N leaching by 52,31,68 and 27%. The reduction in N leaching from clay and sand when barley was undersown with ryegrass was nearly the same as the increased total uptake of N (barley +ryegrass).In sand soil, ryegrass was able to diminish the NO 3-N concentration of the drainage water well below the limit for acceptable drinking water. Spring tillage reduced N leaching only on peat soil (16%). Slight competition between the main and the undersown crop was indicated by lower N contents of the barley yield.;


Sign in / Sign up

Export Citation Format

Share Document