scholarly journals Antibiotic resistance pattern of uropathogenic Escherichia coli isolated from children with symptomatic urinary tract infection in Moscow, Russia

2021 ◽  
pp. 212-219
Author(s):  
Souadkia Sarra ◽  
Mbarga Manga Joseph Arsene ◽  
Volina Elena Grigorievna ◽  
Podoprigora Irina Victorovna ◽  
Yashina Natalia Vyacheslavovna ◽  
...  

Background and Aim: Uropathogenic Escherichia coli (UPEC) is commonly involved in urinary tract infections (UTIs), which are generally treated with antibiotics. However, the emergence of multidrug-resistant (MDR) strains of UPEC has made the treatment difficult. There is thus a need to continuously assess their sensitivity to antibiotics. This study aimed to determine the antibiotic resistance patterns and MDR phenotypes of UPEC strains isolated from children diagnosed with UTIs at the Russian Children's Clinical Hospital in Moscow, Russia. Materials and Methods: Kirby–Bauer's disc diffusion method was used to study the sensitivity to antibiotics of 106 UPEC isolates from urine specimens from children (aged from 9 months to 18 years old) diagnosed with UTIs. The results were interpreted in accordance with the Clinical and Laboratory Standards Institute guidelines and the correlations of variables with the degree to which each antibiotic inhibited the UPEC strains in terms of diameter on the disc were determined using Spearman's rank correlation test. A t-test and principal component analysis were performed to visualize the correlations of the susceptibility of UPEC to antibiotics with the age and sex of the patients. Statistical significance was set at p≤0.05. Results: Among the 106 UPEC strains tested, none (0%) showed resistance to fosfomycin (FO), while 84 (79.2%) were resistant (R) to at least one antibiotic. The highest rates of resistance were observed to amoxicillin (69.8%), ampicillin (62.3%), cefazolin (39.6%), trimethoprim (TR) (37.7%), ceftriaxone (34.9%), and tetracycline (33.0%). Interestingly, 22 (20.8%) strains were R to imipenem. UPEC isolates from males aged 1-6 years were more R to antibiotics than those from the other groups, with the exception of TR, to which UPEC isolates from females aged 13-18 years old were less sensitive (S). The multidrug-resistance (MDR) index ranged between 0.00 and 0.75 and we found that more than a quarter of UPEC (31/106) had an MDR index ≥0.5 and only 22 (20.7%) strains were S to all antibiotics tested (MDR index=0). Finally, Spearman's rank correlation test showed that, with the exception of FO, there were correlations between the inhibition diameters of all other antibiotics. Conclusion: FO is the only antibiotic to which all UPECs were S and may be suggested as the first line of treatment for UPEC. Further research is needed to continue monitoring antibiotic resistance and to investigate the genetic features associated with such resistance observed in this study.

Author(s):  
Mustafa Sofiur Rahman ◽  
Ritu Garg ◽  
Varsha A. Singh ◽  
Dipankar Biswas

Background: Escherichia coli are the most common cause of urinary tract infections in community as well as hospital settings. Emergence of drug resistance in Escherichia coli due to various mechanisms makes the treatment options very limited. This study was undertaken to detect ESBLs in uropathogenic Escherichia coli isolates and to determine their antimicrobial susceptibility pattern in rural setting.Methods: A prospective study was done on 502 E. coli isolates from clinically suspected cases of urinary tract infections (UTI) patients of all age groups. All samples were inoculated on Cysteine Lactose Electrolyte Deficient Agar (CLED). Organisms grown in pure culture were identified by standard biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer Disc diffusion method on Muller Hinton agar. ESBL detection was done as per CLSI guidelines.Results: Of the 502 isolates of Escherichia coli, nitrofurantoin (82%) was found be most sensitive antimicrobial followed by amikacin (73%), gentamycin (71%) and imipenem (64%). Common empirically used antibiotics like fluroquinolones and Cotrimoxazole drugs showed alarming rate of resistance. 60% isolates were found to be multidrug resistant. ESBL production was detected in 31% isolates. ESBL producing strains were found to be more drug resistant than non ESBL producing strains.Conclusions: So, drug resistance due to production of ESBLs in Escherichia coli is a serious threat for clinicians. Strict infection control measures and early detection of beta lactamase producing isolates are the need of the hour to contain the emergence of this type of resistance.


2020 ◽  
Vol 14 (4) ◽  
pp. 2577-2584
Author(s):  
Tariq Ahmad Shah ◽  
P. Preethishree ◽  
Ashwini ◽  
Vidya Pai

Urinary tract infection (UTI) is one of the most common complaints in the outpatient clinic and a major health problem owing to the emergence of antibiotic resistance and biofilm formation. The objective of this study was to isolate and identify the causative bacterial agent of UTI and detect in vitro biofilm formation by Escherichia coli and investigate its correlation with antibiotic resistance. Urine samples from 519 patients with suspected UTIs were collected and processed by conventional microbiological procedures. Antimicrobial susceptibility testing for E. coli isolates was performed on Mueller Hinton agar (MHA) plates using the Kirby-Bauer disk diffusion method. Biofilm production was evaluated using the tissue culture plate method. Of 519 urine samples, 115 (22.1%) showed significant bacteriuria. The most common isolate was E. coli (n=57, 49.6%), followed by Klebsiella spp. (n=23, 20%). All E. coli isolates were evaluated for their ability to form biofilms in vitro. Of 57 isolates, 50 (87.7%) were biofilm producers and 7 (12.3%) were non-biofilm producers. Antibiogram of E. coli isolates revealed the highest resistance to ampicillin (96.5%) and nitrofurantoin (91.2%), followed by amoxyclav (82.5%), ceftazidime (73.7%), cefepime (71.9%), and tetracycline (71.9%). A significant association (p<0.05) was observed between biofilm formation and resistance to amoxyclav, ceftazidime, cefepime, imipenem, and nitrofurantoin. A significant correlation was noted between biofilm production and antibiotic resistance. Hence, screening of all isolates of uropathogenic E. coli for biofilm production and studying their antibiogram would allow appropriate choice of antibiotic therapy.


2013 ◽  
Vol 32 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Basudha Shrestha ◽  
Rajesh Lal Gurubacharya ◽  
Basanta Maharjan ◽  
Sanjit Shrestha

Introduction: Antibiotic resistance of urinary tract pathogens has increased globally. Updated knowledge of the antibiotic resistance patterns of uropathogens in the health institutes is important for the selection of an appropriate empirical antimicrobial therapy. The aim of this study was to evaluate the multi drug resistant urinary isolates in the children from 1 to15 years and evaluate the options for empiric antibiotic therapy. Materials and Methods: The study was conducted from December 2011 to May 2012 in the Bacteriology laboratory, Kathmandu Model Hospital. Urine samples received in the laboratory were processed for routine, culture and its sensitivity. The antimicrobial susceptibility of bacterial isolates was determined following Clinical and Laboratory Standard Institute (CLSI) recommended Kirby-Bauer Disc Diffusion method. Results: Of the total 372 urine samples received in the laboratory, 60 (16.13%) showed significant growth; of which 55.0 % (33/60) were MDR isolates. Escherichia coli were the predominant isolate from urine sample. Out of 49 Escherichia coli isolates, 27 (45.0%) were Multi drug resistant. Enterococcus faecalis (N=3) was the most predominant Gram positive isolate and 66.67 % (2/3) of this organism were multi drug resistant. Among the first line drugs used against gram negative isolates, nitrofurantoin was the most effective drug followed by quinolones, while among the second line drugs; meropenem was the most effective drug followed by chloramphenicol and amikacin, whereas; nitrofurantoin (100%) was the most effective drug for Gram positive isolates followed by norfloxacin and cefotaxime. Conclusion: High percentages of multi drug resistant uropathogens were revealed in children. Nitrofurantoin was found to be the most effective drug for gram positive, gram negative and multi drug resistant isolates. DOI: http://dx.doi.org/10.3126/jnps.v32i3.6771 J. Nepal Paediatr. SocVol.32(3) 2012 233-238


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


Author(s):  
Somayeh Bakhtiari ◽  
Hassan Mahmoudi ◽  
Sara Khosravi Seftjani ◽  
Mohammad Ali Amirzargar ◽  
Sima Ghiasvand ◽  
...  

Background and Objectives: Escherichia coli is the most common causative agent of urinary tract infections (UTIs) in 90-80% of patients in all age groups. Phylogenetic groups of these bacteria are variable and the most known groups are A, B1, B2 and D. The present study aimed to evaluate the phylogenetic groups of E. coli samples obtained from UTIs and their relation with antibiotic resistance patterns of isolates. Materials and Methods: In this study 113 E. coli isolates were isolated from distinct patients with UTIs referred to Hamadan hospitals. After biochemical and molecular identification of the isolates, typing and phylogenetic grouping of E. coli strains were performed using multiplex PCR targeting chu, yjaA and TSPE4.C2 genes. The anti-microbial susceptibility of the isolates to amikacin, ampicillin, trimethoprim-sulfamethoxazole, amoxicillin/clavulanic acid, ciprofloxacin, cefotaxime, imipenem, aztreonam, gentamicin, meropenem, nitrofurantoin, nalidixic acid and cefazolin was determined using disk diffusion method. Results: Of 113 isolates, 50 (44.2%), 35 (31%), 23 (20.4%) and 5 (4.4%) of samples belonged to group B2, group D, group A and group B1 phylogenetic groups respectively. All isolates were susceptible to meropenem, imipenem (100%), followed by amikacin (99.1%). The highest resistance rates were observed against ampicillin (74.3%) and nalidixic acid (70.8%). Correlation between phylogenetic groups and antibiotic susceptibilities was significant only with co-amoxiclav (P = 0.006), which had the highest resistance in phylogenetic group A. Conclusion: Prevalence of different phylogroup and resistance associated with them in E. coli samples could be variable in each region. Therefore, investigating of these items in E. coli infections, could be more helpful in selecting the appropriate antibiotic treatment and epidemiological studies.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Eman Jassim Mohammed ◽  
Mohammed Allami ◽  
Mohammadreza Sharifmoghaddam ◽  
Masoumeh Bahreini

Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: Conclusion: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.


2019 ◽  
Vol 19 (3) ◽  
pp. 322-326 ◽  
Author(s):  
Hassan Valadbeigi ◽  
Elham Esmaeeli ◽  
Sobhan Ghafourian ◽  
Abbas Maleki ◽  
Nourkhoda Sadeghifard

Introduction: The aim of the current study was to investigate the prevalence of virulence genes in uropathogenic Escherichia coli (UPEC) isolates in Ilam. Materials and Methods: For this purpose, a total of 80 UPEC isolates were collected for patients with UTIs during a 6 months period. The multiplex polymerase chain reaction (multiplex PCR) was used to detect the papEF, fimH, iucD, hlyA, fyuA, and ompT genes. Results: The prevalence of fimH, papEF, iucD, fyuA, hlyA, hlyA, and ompT genes were 87.5%, 47.5%, 60%, 67.5%, 27.5%, 47.5% and 71.2%, respectively. Among all of the isolates, 27 profiles were obtained. Conclusion: Our findings demonstrated that the most prevalence was found for fimH, and different distribution of virulence genes suggested different ability of pathogenicity.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Lívia Slobodníková ◽  
Barbora Markusková ◽  
Michal Kajsík ◽  
Michal Andrezál ◽  
Marek Straka ◽  
...  

Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.


Sign in / Sign up

Export Citation Format

Share Document