scholarly journals Isolasi dan identifikasi bakteri toleran logam berat dari sedimen mangrove di Pengudang dan Tanjung Uban, Pulau Bintan, Indonesia

2019 ◽  
Vol 4 (2) ◽  
pp. 71
Author(s):  
Charlie Ester De Fretes ◽  
Lies Indah Sutiknowati ◽  
Dede Falahudin

<strong>Isolation and Identification of Heavy Metals Tolerant Bacteria from Mangrove Sediment in Pengudang and Tanjung Uban, Bintan Island, Indonesia</strong>. Bacterial searches for remediation of heavy metal pollutants continue to be carried out due to the increasing pollution in the ecosystem as a result of industrialization. This research aims to identification bacteria strains that are tolerant of heavy metals from mangrove sediments in the Pengudang and Tanjung Uban, Bintan Island in 2018. Bacterial isolation was carried out by pour plate method and purified using marine agar (MA) medium. Screening of bacterial isolates was carried out by growing isolates on MA medium with the addition of 100 ppm Pb. In addition, the determination of minimum inhibitory concentration (MIC) was performed on the isolates were tolerant to Pb, Cu, and Cd by addition of heavy metals in 50-1000 ppm concentrations. Identification of heavy metal tolerant isolates was carried out by sequencing the 16S rRNA gene. The results of bacterial isolation from mangrove sediments obtained 48 isolates used for testing the ability of heavy metals tolerant. Screening tests showed that PGD1A, PGD5A, PGD22A, PGD1B, PGD9B, PGD5C, PGD6C, TJU1, TJU5, and TJU7 isolates were heavy metal resistant. The results showed that bacterial isolated from mangrove sediments had MIC values of 800-900 ppm for Pb, 100-800 ppm for Cu and 100-200 ppm for Cd. There are 3 isolates that have high resistance to three kinds of heavy metals such as Bacillus oceanisediminis PGD1A, Vibrio alginolyticus PGD5A, and Halobacillus kuroshimensis PGD9B. This indicates that the isolate can be used efficiently for removal of heavy metals from the ecosystem.

1994 ◽  
Vol 29 (4) ◽  
pp. 193-200 ◽  
Author(s):  
N. F. Y. Tam ◽  
Y. S. Wong

Soil column studies were carried out to examine the capacity of mangrove sediments in retaining wastewater nutrients and heavy metals. Synthetic wastewater of three different concentrations, namely diluted sewage (DW), medium sewage (MW) and concentrated sewage (CW), were applied to the columns daily over a period of 54 days. Leachate from each column was collected and analyzed. The study revealed that the concentrations of ammonium in the leachates from all sewage treatments decreased dramatically in the first week with a pattern similar to the control. After this initial decrease, ammonium contents increased rapidly especially in the column treated with CW, then remained at a steady level. At the end of the experimental period, the concentrations of ammonium found in the leachate were in the declining order of CW &gt; MW &gt; DW &gt; control. Organic nitrogen, nitrites and nitrates were not detected in the leachates from all sewage treatments. This suggested that denitrification might have occurred and some of the nitrogen from sewage might have been retained in the mangrove sediment. The changes in leachate K concentration were similar to that of NH4+-N content. On the other hand, the soluble phosphorus and heavy metal contents of leachates from sewage treated columns were similar to those of the control. Most of the heavy metals, including Cu, Zn and Cd, were not detected in the leachate. The sediment data showed that NH4+-N, ortho-P, and heavy metals were accumulated on the top layer of the soil column and their contents decreased with the depth of the soil column. The highest metal content was found in the column treated with concentrated sewage. It is clear that mangrove sediments acted as a good filter/trap for phosphorus and metals, but were less efficient for ammonium nitrogen.


2016 ◽  
Vol 8 (11) ◽  
pp. 9356 ◽  
Author(s):  
P. Vidya ◽  
Rajashekhar K. Patil

Sediment cores were collected from four different mangrove areas of northern Kerala and southern Karnataka, western coast of India.  The cores were analysed for the concentration of five heavy metals (Pb, Ni, Zn, Cu Fe) using Atomic Absorption Spectrometry.  The levels of heavy metals in the present study from all the four sediment cores were in the order Fe > Pb > Zn > Ni > Cu and the mean concentrations of each elements in different cores were comparable.  According to Sediment Quality Guidelines (SQG), the mangrove sediments analysed here were moderately contaminated with Ni and heavily contaminated with Pb.  The increased concentration of Ni and Pb in the sediments might be due to their atmospheric deposition or water discharge from different far away sources since the areas selected for study were not disturbed by direct anthropogenic impacts.  Elevated levels of Fe which is considered to be a common phenomenon in mangrove sediments have also been found in the present study.  Heavy metal levels in sediments showed statistically significant correlations with pH, calcium carbonate and organic matter.  This suggests the influence of physico-chemical parameters on the adsorption, deposition and persistence of heavy metals in mangrove sediments.  The heavy metal concentration and the pollution status of the mangroves of west coast, especially the areas selected in this work are less studied before. Hence the data provide from the present baseline study would be further helpful in remediation and management of mangrove ecosystem. 


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


2016 ◽  
Vol 29 (1) ◽  
pp. 23-26
Author(s):  
M Iqbal Hossain ◽  
M Nural Anwar

The aim and objective of the study was to isolate and characterize heavy metal tolerant microorganisms from tannery effluents. Six effluent samples were collected aseptically and their physical and chemical parameters were determined. A total of 40 bacterial colonies were isolated from these effluent samples. Among them, six bacterial isolates were characterized provisionally as Alcaligenes aquamarinus, Bacillus coagulans, Bacillus firmus, Enterobacter cloacae, Pseudomonas alcaligens and Pseudomonas mendocina based on morphological, cultural and biochemical characteristics. The survibality and tolerance to heavy metals (Cr and Cu) of these isolates were examined. All the isolates were found to grow at high concentration of CuSO4 (95ppm/ml) and varying degrees of chromium (K2Cr2O7). The highest tolerance was shown by Alcaligenes aquamarinus. These heavy metal tolerant organisms could be potential agents for bioremediation of heavy metals polluted environment.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 23-26


2020 ◽  
Vol 21 (2) ◽  
pp. 98-109
Author(s):  
Witriani Marvinatur Ihsan ◽  
Ratnawulan Ratnawulan

In the South Coastal Forest area, West Sumatra, a luminous mushroom with the species Neonothopanus Sp. This research was conducted with the aim of seeing the effect of heavy metals on the bioluminescence reaction of luminous mushrooms. Starting from the effect of heavy metal concentrations on the intensity and inhibition coefficient of luminous mushroom biolumination. From the measurement results, the maximum intensity value of luminous mushrooms is 499.6 au occurring at a wavelength of 505 nm. At a wavelength of 505 nm, visible light is produced in green. The results obtained are in accordance with observations, because the light emitted by the glowing mushroom is green. If the concentration of heavy metals is greater, the intensity of the bioluminescent fungus (Neonothopanus sp) will decrease. The type of heavy metal affects the intensity of the fungus biolumination. The greatest decrease in intensity occurred in copper (Cu) and iron (Fe), zinc (Zn) and lead (Pb). If the heavy metal concentration is greater, the inhibition coefficient will be smaller. The greatest inhibition coefficient due to the presence of heavy metals occurs in copper (Cu) then iron (Fe), zinc (Zn) and the smallest is lead (Pb).


2013 ◽  
Vol 830 ◽  
pp. 341-344
Author(s):  
Jun Jun Du ◽  
Sheng Ping Jin ◽  
Qiong Li ◽  
She Sheng Zhang

Consider heavy metal pollution of topsoil in the city of world today is a hot science research project. A fuzzy clustering algorithm l is constructed ed by analyzing the propagation characteristics of heavy metal pollutants. Considering topography, areas, factories, roads, , irredentist, etc. we calculate a evaluation on comprehensive pollution, and the degree of heavy metals pollution, by using fuzzy clustering and fuzzy AHP. The results show that the index of the comprehensive pollution of heavy metals on the region, and the weight of pollution of each category.


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Author(s):  
Abimbola O. Aleshinloye ◽  
Kemayou Ngangsso ◽  
Feyisara B. Adaramola ◽  
Adebayo Onigbinde

This study investigated the potential of some agricultural wastes viz; African Star apple seed shell (ASS, plant source), crab shell (CS, animal source) and chicken egg shell (ES, animal source) as eco-friendly and low-cost biological materials for the removal of heavy metals from poultry wastewater. TS, TSS and TDS of the wastewater sample were assayed by filtration methods, chloride content by previously reported method and heavy metal contents (Zn, V, Cd, Fe, Ni, Cu, Co, Pb, Cr and Mn); were analyzed using Microwave Plasma Atomic Emission Spectrometer. The results of the solids and chloride contents of the poultry wastewater were TDS (3100 mg/L), TS (3700 mg/L), TSS (6000 mg/L) and chloride (4.7 g/L); all above the EPA permissible limits. Results of the FTIR analysis showed that ASS is an amide polymer while the CS and ES shells are mixtures of amide and carbonate polymers. Also, results of heavy metal analysis before and after adsorption showed that ASS caused removal of Zn, V, Fe, Cu, Co/ Pb and Mn by 48.27, 32.22, 49.64, 91.44, 100 and 82.39% respectively while Cd, Ni and Cr contents increased by 31, 61 and 48.3% respectively. CS showed removal of Fe, Ni/ Co/ Cr, Pb and Mn by 89.64, 100, 3.51 and 95.96% respectively while Zn, V, Cd and Cu contents increased by 1.7, 61.2, 76.1 and 68.1% respectively. Meanwhile, with ES, the contents of Zn, Fe, Ni, Cu, Cr and Mn increased by 31.56, 86.36, 100, 55.5, 45.80 and 90.33% respectively while the contents of V, Cd, Co and Pb decreased by 78.9, 86.7, 42.5 and 46.2% respectively. This study demonstrated the use of ASS, CS and ES as low- cost and eco-friendly agricultural wastes with significant potential for removal of heavy metals from wastewaters.


2001 ◽  
Vol 44 (10) ◽  
pp. 53-58 ◽  
Author(s):  
L. C. Aralp ◽  
A. Erdincler ◽  
T. T. Onay

Heavy metal concentration in sludge is one of the major obstacles for the application of sludge on land. There are various methods for the removal of heavy metals in sludge. Using sulfur oxidizing bacteria for microbiological removal of heavy metals from sludges is an outstanding option because of high metal solubilization rates and the low cost. In this study, bioleaching by indigenous sulfur oxidizing bacteria was applied to sludges generated from the co-treatment of municipal wastewater and leachate for the removal of selected heavy metals. Sulfur oxidizing bacteria were acclimated to activated sludge. The effect of the high organic content of leachate on the bioleaching process was investigated in four sets of sludges having different concentrations of leachate. Sludges in Sets A, B, C and D were obtained from co-treatment of wastewater and 3%, 5%, 7% and 10% (v/v) leachate respectively. The highest Cr, Ni and Fe solubilization was obtained from Set A. Sulfur oxidizing bacteria were totally inhibited in Set D that received the highest volume of leachate.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ismael Acosta-Rodríguez ◽  
Juan F. Cárdenas-González ◽  
Adriana S. Rodríguez Pérez ◽  
Juana Tovar Oviedo ◽  
Víctor M. Martínez-Juárez

The objective of this work was to study the resistance and removal capacity of heavy metals by the fungusAspergillus niger. We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.2%), fluor (83%), cobalt (71.4%), fairly silver (48%), and copper (37%). The ideal conditions for the removal of 100 mg/L of the heavy metals were 28°C, pH between 4.0 and 5.5, 100 ppm of heavy metal, and 1 g of fungal biomass.


Sign in / Sign up

Export Citation Format

Share Document