scholarly journals Evaluation of Essential Oil from Common Medicinal Plants Against Culex quinquefasciatus Larvae (Diptera: Culicidae) in Pakistan

2014 ◽  
Vol 26 (9) ◽  
pp. 2661-2663
Author(s):  
Sabiha Fazal ◽  
Farkhanda Manzoor ◽  
Asma Abdul Latif
Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1061
Author(s):  
Sims K. Lawson ◽  
Prabodh Satyal ◽  
William N. Setzer

As part of our evaluation of essential oils derived from Native American medicinal plants, we have obtained the essential oils of Agastache foeniculum (Pursch) Kuntze (Lamiaceae), Gaultheria procumbens L. (Ericaceae), Heliopsis helianthoides (L.) Sweet (Asteraceae), Liatris spicata (L.) Willd. (Asteraceae), Pycnanthemum incanum (L.) Michx. (Lamiaceae), Smallanthus uvedalia (L.) Mack. ex Mack. (Asteraceae), and Verbena hastata L. (Verbenaceae) by hydrodistillation. The essential oils were analyzed by gas chromatographic techniques. The essential oil of A. foeniculum was dominated by estragole (88–93%), while methyl salicylate (91%) dominated the G. procumbens essential oil. Germacrene D was the major component in H. helianthoides (42%) and L. spicata (24%). 1,8-Cineole (31%) and α-terpineol (17%) were the main compounds in P. incanum essential oil. The essential oil of S. uvedalia showed α-pinene (24%), perillene (15%), and β-caryophyllene (17%) as major components. Verbena hastata essential oil was rich in 1-octen-3-ol (up to 29%) and palmitic acid (up to 22%). Four of these essential oils, H. helianthoides, L. spicata, P. incanum, and V. hastata, are reported for the first time. Additionally, the enantiomeric distributions of several terpenoid components have been determined.


2013 ◽  
Vol 5 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Razieh VALI ASILL ◽  
Majid AZIZI ◽  
Maasome BAHREINI ◽  
Hossein AROUIEE

Today, Ozone as a disinfectant method, without putting on the harmful effects on human and plant products, it is alternative common methods for disinfection of plant material. The research as a factorial experiment was conducted on the basis of randomized complete block design with three replications and the effects of Ozone gas on decreasing the microbial load of some important medicinal plants include: Peppermint (Mentha piperita), Summer savory (Satureja hortensis), Indian valerian(Valeriana wallichii), Meliss (Melissa officinalis) and Iranian thyme (Zataria multiflora) were investigated. Medicinal plants leaves were treated with Ozone gas concentration 0.3, 0.6 and 0.9 ml/L at times of 10 and 30 then total count, coliform and mold and yeast of the samples were studied. The result showed that Ozone gas decreases microbial load of medicinal plants samples. But Ozone gas and Ozone gas in medicinal plants interaction effect had no effect on essential oil content. The lowest and the highest of microbial load were detected in samples treated with concentration of 0.9 ml/L of Ozone gas and control respectively. The highest and the lowest of microbial load were observed in Iranian thyme and Indian valerian respectively. Also result showed that Ozone gas treatment for 30 min had the greatest of effect in reducing the microbial load and 0.9 ml/L Ozone gas concentration had the lowest of microbial load. Results of this survey reflect that the use of Ozone as a method of disinfection for medicinal plants is a decontamination.


2015 ◽  
Vol 9 (2) ◽  
pp. 9-13 ◽  
Author(s):  
Amir Hossein Saeidnejad ◽  
Peyman Rajaei

Essential oils constitute a heterogeneous collection of chemical compounds. Their main characteristics are that they all synthesized by plants and are volatile and mostly soluble in ethanol. They have traditionally been obtained from plants and they have been widely used for insecticidal, medicinal and cosmetic purposes. Essential oils contains about 20–60 components at quite different concentrations and they are characterized by two or three major components at fairly high concentrations. Lately, the essential oils and various extracts of plants have gained special interest as sources of natural antimicrobial and antioxidant agents because of the resistance to antibiotics that some microorganisms have acquired and the possible toxicities of the synthetic antioxidants. Spices consumed daily in different types of food to improve flavors, since ancient times, are well known for their antioxidant and antimicrobial properties. During recent decades, numerous numbers of plants have been monitored for their possible role as repellents and insecticides. In this review, the chemical composition profile of some important medicinal plants was evaluated, then antimicrobial properties of a number of essential oils was compared. Antioxidant activity of some essential oils was also considered. Finally, essential oil repellent properties an an important characteristics was evaluated. Further investigation for available data related to the other biological properties of medicinal plants essential oil is recommended.DOI: http://dx.doi.org/10.3126/ijls.v9i2.12043 International Journal of Life Sciences 9 (2) : 2015; 9-13


2020 ◽  
Vol 3 (4) ◽  
pp. 60-67
Author(s):  
Jessica Alarcón-Moyano ◽  
◽  
Silvia Matiacevich ◽  

The use of bioactive/active additives has been increasing in recent years, especially those derived from medicinal plants such as essential oils. However, due to essential oil oxidation it is necessary to protect it by encapsulation techniques such as: emulsion, spray- and/or freeze-drying as the most economical techniques. On the other hand, an important factor is to determine the appropriate wall material to obtain a prolonged or controlled release in the food or in the organism. Therefore, several factors affect the release of the compounds such as the type, amount of wall material and/or combination of wall materials. Therefore, the knowledge of all the aforementioned factors is important in order to make an adequate selection for the development of a bioactive/active additive based on essential oils.


2015 ◽  
Vol 2 ◽  
pp. 850-857 ◽  
Author(s):  
I.A. Owokotomo ◽  
O. Ekundayo ◽  
T.G. Abayomi ◽  
A.V. Chukwuka

2021 ◽  
Vol 25 (4) ◽  
pp. 433-441
Author(s):  
I. N. Korotkikh ◽  
D. N. Baleev ◽  
A. I. Morozov ◽  
P. G. Mizina ◽  
N. I. Sidelnikov

This review discusses the main methods of breeding material development, the current state, problems and prospects for medicinal and essential oil plants breeding. The relevance of this area has especially increased due to the sanctions, the resulting shortage of medicinal plants and their low quality, which does not meet the requirements of the pharmaceutical industry. To produce a stable plant raw material base, it is necessary to actively develop a breeding process to create new highly productive varieties of medicinal plants resistant to biotic and abiotic environments. In breeding with the use of modern molecular biological methods, related species and generic complexes of the All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR) collection can be involved, where there is extensive original genetic material of medicinal, essential oil, rare and endangered species. In the breeding of medicinal and essential oil crops, traditional methods of individual and individual-family selection, polyploidy, chemical mutagenesis and a combination of methods to obtain original breeding material are still promising. VILAR has created more than 90 varieties of medicinal and essential oil crops, most of which have been approved for use throughout the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document