scholarly journals Recent Updates on Biopolymers based Wound Dressings

2021 ◽  
Vol 33 (7) ◽  
pp. 1457-1470
Author(s):  
Sonia Arora ◽  
Manju Nagpal ◽  
Malkiet Kaur

Wound dressing is designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contamination and moisture thereby facilitating and accelerate the healing process. The material used to prepare wound dressing include natural and synthetic polymer as their combination in the form of film and sponges that may be extensively used in wound dressing material. Naturally occurring polymers having many importance because of high biocompatibility and environmentally finding properties. Polysaccharides are naturally occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharide are a class of polysaccharides consists of only one type of monosaccharide. Naturally occurring polymers are used for wound dressing properties because of their extracellular matrix as good acceptance by biological system. Polysaccharide is type of naturally occurring polymers that offer the advantage of good hemocompatibility and low cost in comparison with other biopolymers. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers including chitosan, silk fibroin, sodium alginate and hyaluronic acid were considered.

2021 ◽  
Vol 23 (09) ◽  
pp. 400-408
Author(s):  
Amruth P ◽  
◽  
Amruth P ◽  
Rosemol Jacob M ◽  
Suseela Mathew ◽  
...  

Wound healing remains as a dynamic process and the type of dressing material significantly affects the efficacy of healing. The identification of ideal dressings to use for a particular wound type is an important requisite facilitating the entire process of healing. Chronic, high exudate wounds are dynamic in presentation and remain as a major health care burden. Researchers have sort to design and optimize biodegradable wound dressings that focuses to optimize moisture retentiveness, as superior character in the healing process. In addition, dressings have been designed to visualize the wound bed by improving the optical property, target and kill infection-causing bacteria, with the incorporation of antimicrobial agents, nanomaterials and numerous other measures. For the practitioners, choosing the optimal dressing decreases time to healing, provides cost-effective care and improves patient quality of life. The current mini review highlights the ideal characters of wound dressing materials and presents insights on the superior characters of carrageenan bio composites for prospective advancements in research in the area of wound care and management.


2021 ◽  
Vol 11 (4) ◽  
pp. 1713
Author(s):  
Ilenia De Luca ◽  
Parisa Pedram ◽  
Arash Moeini ◽  
Pierfrancesco Cerruti ◽  
Gianfranco Peluso ◽  
...  

Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammad Saeid Salami ◽  
Gholamreza Bahrami ◽  
Elham Arkan ◽  
Zhila Izadi ◽  
Shahram Miraghaee ◽  
...  

Abstract Background Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. Results SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). Conclusion The incorporation of the extract had no significant effects on nanofibers’ porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1609 ◽  
Author(s):  
Tang ◽  
Yang ◽  
Lin ◽  
Chen ◽  
Lu ◽  
...  

Wound dressing, which prevents dehydration and provides a physical barrier against infection to wound beds, can improve wound healing. The interactions between extracellular matrix (ECM) and growth factors is critical to the healing process. Electrospun nanofibers are promising templates for wound dressings due to the structure similarity to ECM of skin. Otherwise, the ECM secreted by human adipose-derived stem cells (hASCs) is rich in growth factors known to enhance wound healing. Accordingly, we propose that the PLGA nanofibrous template incorporated with hASCs-secreted ECM may enhance wound healing. In this study, PLGA nanofibrous matrixes with an aligned or a random structure were prepared by electrospinning. Human ASCs cultured on the aligned matrix had a better viability and produced a larger amount of ECM relative to that of random one. After 7 days’ cultivation, the hASCs on aligned PLGA substrates underwent decellularization to fabricate cECM/PLGA dressings. By using immunohistochemical staining against F-actin and cell nucleus, the removal of cellular components was verified. However, the type I collagen and laminin were well preserved on the cECM/PLGA nanofibrous matrixes. In addition, this substrate was hydrophilic, with appropriate mechanical strength to act as a wound dressing. The L929 fibroblasts had good activity, survival and proliferation on the cECM/PLGA meshes. In addition, the cECM/PLGA nanofibrous dressings improved the wound healing of surgically created full-thickness skin excision in a mouse model. This hASCs-secreted ECM incorporated into electrospun PLGA nanofibrous could be a promising dressing for enhancing wound healing.


2001 ◽  
Vol 29 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Herman Sahlin ◽  
Håkan Nygren

A method was developed for testing the cytotoxicity of various bandage-like wound dressings and gel wound dressings. In this method, the ability of human polymor-phonuclear neutrophils (PMNs) to initiate a respiratory burst after exposure to the various wound dressings is used as a marker of cytotoxicity. Luminol-amplified chemiluminescence stimulated with opsonised zymosan or phorbol 12-myristate 13-acetate (PMA) is used to measure the degree of activation of the respiratory burst, i.e. the NADPH oxidase activity, after exposure to wound dressings. Opsonised zymosan (material from yeast cell walls) is a phagocytic stimulus that activates the NADPH oxidase by binding to Fc-receptors and complement receptors, and functions as an artificial bacterium, whereas PMA activates the NADPH oxidase by direct activation of protein kinase C. NADPH oxidase activity was inhibited by several wound dressings. The down-regulation of the respiratory burst is detrimental to the bactericial effect of PMNs, and can be used as a marker for the cytotoxicity of wound-dressing materials.


2021 ◽  
Author(s):  
Suganya Bharathi Balakrishnan ◽  
Manawwer Alam ◽  
Naushad Ahmad ◽  
Manikandan Govindasamy ◽  
Sakthivelu Kuppu ◽  
...  

As wound dressing materials, electrospun nanofibrous scaffolds have a lot of promise. Electrospun nanofibrous scaffolds in combination with ZnO nanoparticles have antimicrobial and antioxidant properties, making electrospinning a successful technique for wound dressings.


2021 ◽  
Vol 11 (12) ◽  
pp. 1966-1974
Author(s):  
Wei Wei ◽  
Liang Xing ◽  
Jianke Feng

Wound dressing materials are essential in wound healing care management. In addition to their supportive effect on the care management, polysaccharides and metal oxide nanoparticles actively contribute to the healing process. CeO2 nanoparticles can promote wound healing through oxidative damage in the wound environment against elevated levels of reactive oxygen species. Therefore, it is necessary to develop multi-functional hydrogel wound dressing materials to stimulate wound healing. In this study, a CeO2-loaded poly(ɛ-caprolactone)/PEC polymeric hydrogel was fabricated as a cutaneous wound-healing material. The in-vitro cytotoxic and wound healing activities were analyzed using the fabricated material in mice. A histological examination showed that the nanofibrous material accelerated the reepithelialization and provided an excellent collagen deposition. In addition, the prepared hydrogels were tested against S. aureus and E. coli. Our results evidence the unique characteristics of the hydrogel wound dressing material exhibiting antibacterial and antioxidant activities and good biocompatibility and healing efficiencies by enhancing the reepithelialization and granulation formation and effectively accelerating the wound healing to prevent skin infections.


Author(s):  
R. M. Zaki ◽  
K. Ramasamy ◽  
R. K. Mishra ◽  
A. B. A. Majeed ◽  
S. M. Lim

Bacterial infection is one of the key challenges to the wound healing process. Ideal wound dressing materials should, therefore, be able to inhibit bacterial infection. The present study evaluated the antibacterial properties of composite films for use as wound dressing materials. The composite films, which were made up of starch, sodium hyaluronic acid (SHA), and sorbitol, were prepared at varying concentrations of hyaluronic acid (25-100mg) by solvent casting method. The composite films were tested against gram-negative Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium as well as gram-positive Staphylococcus aureus for 24 hours by using the disc diffusion assay. Chloramphenicol and ciprofloxacin were included as positive controls. Amongst the tested pathogens, composite films with SHA > 25mg inhibited only P. aeruginosa. It is noteworthy that the antibacterial effect of composite films with SHA > 50mg were comparable to those of chloramphenicol and ciprofloxacin. The present findings implied the possible incorporation of starch/ hyaluronic acid/ sorbitol composite films as part of wound dressing for protection against infection caused by P. aeruginosa.


2008 ◽  
Vol 57 ◽  
pp. 125-130 ◽  
Author(s):  
Xin Liu ◽  
Tong Lin ◽  
J. Fang ◽  
Gang Yao ◽  
X.G. Wang

An effective wound dressing is not only able to protect the wound area from its surroundings to avoid infection and dehydration, but also to speed up the healing process by providing an optimum microenvironment for healing, removing any excess wound exudates, and allowing continuous tissue reconstruction. In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA), were used to electrospin nanofibre membranes. The wound dressing performances of these two membranes were compared with the wound dressing performances of protein coated membranes and conventional non-woven cotton wound dressings. In addition, fibre morphology, porous structural property, mechanical properties of the nanofibre membranes, and their drainage capacity and wound skin histology were examined.


2016 ◽  
Author(s):  
Cigdem Kilicarislan Ozkan ◽  
Hasan Ozgunay ◽  
Stefania Marin ◽  
Madalina Georgiana Albu Kaya

Sign in / Sign up

Export Citation Format

Share Document