Electrospun Nanofibre Membranes as Wound Dressing Materials

2008 ◽  
Vol 57 ◽  
pp. 125-130 ◽  
Author(s):  
Xin Liu ◽  
Tong Lin ◽  
J. Fang ◽  
Gang Yao ◽  
X.G. Wang

An effective wound dressing is not only able to protect the wound area from its surroundings to avoid infection and dehydration, but also to speed up the healing process by providing an optimum microenvironment for healing, removing any excess wound exudates, and allowing continuous tissue reconstruction. In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA), were used to electrospin nanofibre membranes. The wound dressing performances of these two membranes were compared with the wound dressing performances of protein coated membranes and conventional non-woven cotton wound dressings. In addition, fibre morphology, porous structural property, mechanical properties of the nanofibre membranes, and their drainage capacity and wound skin histology were examined.

2021 ◽  
Vol 23 (09) ◽  
pp. 400-408
Author(s):  
Amruth P ◽  
◽  
Amruth P ◽  
Rosemol Jacob M ◽  
Suseela Mathew ◽  
...  

Wound healing remains as a dynamic process and the type of dressing material significantly affects the efficacy of healing. The identification of ideal dressings to use for a particular wound type is an important requisite facilitating the entire process of healing. Chronic, high exudate wounds are dynamic in presentation and remain as a major health care burden. Researchers have sort to design and optimize biodegradable wound dressings that focuses to optimize moisture retentiveness, as superior character in the healing process. In addition, dressings have been designed to visualize the wound bed by improving the optical property, target and kill infection-causing bacteria, with the incorporation of antimicrobial agents, nanomaterials and numerous other measures. For the practitioners, choosing the optimal dressing decreases time to healing, provides cost-effective care and improves patient quality of life. The current mini review highlights the ideal characters of wound dressing materials and presents insights on the superior characters of carrageenan bio composites for prospective advancements in research in the area of wound care and management.


2021 ◽  
Vol 11 (4) ◽  
pp. 1713
Author(s):  
Ilenia De Luca ◽  
Parisa Pedram ◽  
Arash Moeini ◽  
Pierfrancesco Cerruti ◽  
Gianfranco Peluso ◽  
...  

Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.


2021 ◽  
Vol 33 (7) ◽  
pp. 1457-1470
Author(s):  
Sonia Arora ◽  
Manju Nagpal ◽  
Malkiet Kaur

Wound dressing is designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contamination and moisture thereby facilitating and accelerate the healing process. The material used to prepare wound dressing include natural and synthetic polymer as their combination in the form of film and sponges that may be extensively used in wound dressing material. Naturally occurring polymers having many importance because of high biocompatibility and environmentally finding properties. Polysaccharides are naturally occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharide are a class of polysaccharides consists of only one type of monosaccharide. Naturally occurring polymers are used for wound dressing properties because of their extracellular matrix as good acceptance by biological system. Polysaccharide is type of naturally occurring polymers that offer the advantage of good hemocompatibility and low cost in comparison with other biopolymers. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers including chitosan, silk fibroin, sodium alginate and hyaluronic acid were considered.


Author(s):  
Priyanka Patil

Abstract: The injuries and its infections are the most painful form of trauma. Wound infections are the growth of microorganisms within the wound area. This infection causes the body’s immune system, inflammation and damages the tissue within the wound site. Hence, there is an immense need to formulate new dressing materials for wound dressing application. To know more about new dressing material working it is need of time to study the mechanism of wound healing. Today’s review focus on mechanism of wound healing, wound dressing, new dressing material and necessity of wound dressings. Keywords: Wound healing, dressing material


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammad Saeid Salami ◽  
Gholamreza Bahrami ◽  
Elham Arkan ◽  
Zhila Izadi ◽  
Shahram Miraghaee ◽  
...  

Abstract Background Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. Results SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). Conclusion The incorporation of the extract had no significant effects on nanofibers’ porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.


2021 ◽  
pp. 088532822199601
Author(s):  
Linying Shi ◽  
Fang Lin ◽  
Mou Zhou ◽  
Yanhui Li ◽  
Wendan Li ◽  
...  

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds i n vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.


2021 ◽  
Author(s):  
Katerina Menclová ◽  
Petr Svoboda ◽  
Jan Hadač ◽  
Štefan Juhás ◽  
Jana Juhásová ◽  
...  

ABSTRACT Background Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. Material and Methods The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal–Wallis H test and Mann–Whitney U test followed by Bonferroni correction. Significance was set at P &lt; .05. Results Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P &lt; .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). Conclusion Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Zahid Mahmood ◽  
Anne-Marie Salisbury ◽  
Rui Chen ◽  
Stephen Rimmer ◽  
Steven Percival

A medical device comprising of biomaterials responsive to biochemical stimuli: channel for indicating the infective states of wounds and ensuring delivery of smart antimicrobial and antibiofilm agents to promote tissue regeneration and healing. The importance of providing diagnostic wound dressings that can inform healthcare professionals on the state of infection within wounds but also provide some of the treatment required in response to at risk or infected wounds is of key interest. The aim is to investigate an innovative proof of concept diagnostic and detection system, an intelligent hydrogel wound dressing that responds to specific biochemical stimuli in wounds (MMPs and pH) enabling the selective and triggered release of antibiofilm and antimicrobial agents (‘Detect and Treat’)to the trauma site. The dressing is made of a sterile alginate core material covered in a biocompatible dry or hydrated peptide-polymer-complex film and may include a fluorescent dye which upon release during the wound healing process indicates when a change in dressing is necessary. Efficacy studies of the hydrogel dressing were performed within a drip-flow bioreactor in which regression of Pseudomonas aeruginosa biofilm was observed. A 5-log reduction in biofilm was observed in comparison to an untreated control biofilm. The hydrogel dressing indicated a clear response when in contact with biofilms produced only by pathogenic strains of bacteria when analysed. This further confirmed the adequate release and function of the antimicrobial and antibiofilm agents within the peptide-polymer-complex formulation of the hydrogel wound dressing.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


Sign in / Sign up

Export Citation Format

Share Document