scholarly journals The Efficient On-Chip Bus Architecture for High-Performance SoC Design

2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Fred Adu Kumi ◽  
Seungyong Park ◽  
Kwangki Ryoo
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Wen-Chung Tsai ◽  
Ying-Cherng Lan ◽  
Yu-Hen Hu ◽  
Sao-Jie Chen

The next generation of multiprocessor system on chip (MPSoC) and chip multiprocessors (CMPs) will contain hundreds or thousands of cores. Such a many-core system requires high-performance interconnections to transfer data among the cores on the chip. Traditional system components interface with the interconnection backbone via a bus interface. This interconnection backbone can be an on-chip bus or multilayer bus architecture. With the advent of many-core architectures, the bus architecture becomes the performance bottleneck of the on-chip interconnection framework. In contrast, network on chip (NoC) becomes a promising on-chip communication infrastructure, which is commonly considered as an aggressive long-term approach for on-chip communications. Accordingly, this paper first discusses several common architectures and prevalent techniques that can deal well with the design issues of communication performance, power consumption, signal integrity, and system scalability in an NoC. Finally, a novel bidirectional NoC (BiNoC) architecture with a dynamically self-reconfigurable bidirectional channel is proposed to break the conventional performance bottleneck caused by bandwidth restriction in conventional NoCs.


2020 ◽  
Vol 8 (6) ◽  
pp. 1033-1037

The Advance Micro controller Bus Architecture bus protocol is used to build high performance SoC designs (system on chip). This achieves communication through the connection of different functional blocks ( or IP ). By using multiple controllers and peripherals, it makes possible to develop multiprocessor unit. It provides reusability of IP of different buses of AMBA, which can reduce the communication gap between high performance buses and low speed buses. To perform high-speed pipelined data transfers, AMBA based embedded system becomes a demanding hypothesis analytical wise, by using different bus signals supported by AMBA. To synthesize as well as simulate the composite annexation which connects advance high performance bus and advance peripheral bus which known as AHB2APB Bridge in addition to no data loss during transfer is the main target of this work. Implementation of bridge module is designed in Verilog HDL and functional and timing simulation of bridge module are done on a platform of Xilinx.


Author(s):  
G. SHINY ◽  
S. HANUMANTH RAO

The need for on-chip bus protocols are increased drastically for efficient and lossless communication among large number of IP cores of SOC design. This paper proposes a high-performance, highly scalable, busindependent interface between IP cores named as Open Core Protocol-International partnership. The Open Core Protocol (OCP) is a core centric point to point protocol which provides lossless communication and reduces design time, design risk, and manufacturing costs for SOC designs . Main property of OCP is that it can be configured with respect to the application required. The OCP is chosen because of its advanced supporting features such as configurable sideband control signaling and test harness signals, when compared to other core protocols. The OCP defines a pointto-point interface between two communicating entities such as IP cores and bus interface modules. One entity acts as the master of the OCP instance, and the other as the slave .In this paper, the most efficient bus architecture was adopted to support most advanced bus functionalities including simple transactions, burst transactions, pipelined transactions, and out-of-order transactions with respect to its suitable application in the real time product. The Open Core Protocol (OCP) was designed and the hardware modeling for that architecture was done using VHDL. This design is Simulated and Synthesized. An experimental result shows the efficiency of the proposed bus architecture and interface.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


2014 ◽  
Vol 27 (7) ◽  
pp. 669-675 ◽  
Author(s):  
Feng Yue ◽  
Runfeng Li ◽  
Tian Chen ◽  
Jun Liu ◽  
Peng Chen ◽  
...  
Keyword(s):  

2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1302
Author(s):  
Zhiyong Wu ◽  
Lei Zhang ◽  
Tingyin Ning ◽  
Hong Su ◽  
Irene Ling Li ◽  
...  

Surface plasmon polaritons (SPPs) have been attracting considerable attention owing to their unique capabilities of manipulating light. However, the intractable dispersion and high loss are two major obstacles for attaining high-performance plasmonic devices. Here, a graphene nanoribbon gap waveguide (GNRGW) is proposed for guiding dispersionless gap SPPs (GSPPs) with deep-subwavelength confinement and low loss. An analytical model is developed to analyze the GSPPs, in which a reflection phase shift is employed to successfully deal with the influence caused by the boundaries of the graphene nanoribbon (GNR). It is demonstrated that a pulse with a 4 μm bandwidth and a 10 nm mode width can propagate in the linear passive system without waveform distortion, which is very robust against the shape change of the GNR. The decrease in the pulse amplitude is only 10% for a propagation distance of 1 μm. Furthermore, an array consisting of several GNRGWs is employed as a multichannel optical switch. When the separation is larger than 40 nm, each channel can be controlled independently by tuning the chemical potential of the corresponding GNR. The proposed GNRGW may raise great interest in studying dispersionless and low-loss nanophotonic devices, with potential applications in the distortionless transmission of nanoscale signals, electro-optic nanocircuits, and high-density on-chip communications.


Sign in / Sign up

Export Citation Format

Share Document