scholarly journals ПРИДАНИЕ ОГНЕЗАЩИТНЫХ СВОЙСТВ ЦЕЛЛЮЛОЗНЫМ ТЕКСТИЛЬНЫМ МАТЕРИАЛАМ С ПРИМЕНЕНИЕМ ЗОЛЬ - ГЕЛЬ ТЕХНОЛОГИИ

2019 ◽  
pp. 365-372
Author(s):  
Bijamal Raimovna Tausarova ◽  
Anastasiya Yur'yevna Stasenko

The article presents studies on the use of a new composition based on sodium silicate, urea and sodium hydrogen phosphate to impart fire-retardant properties to cellulosic textile materials. The influence of the concentration of the starting components, temperature, and heat treatment time on the flame retardant properties was studied. The change in the fire retardant properties of cotton fabric is given for three heat treatment modes: at 80, 90 and 100 °C. Compared to the initial fabric, the samples treated with a flame retardant have indicators of flame retardant properties. Untreated fabric with a size of 220×170 mm when tested for flammability at an ignition time of 15 s completely burns out in 60 s. In samples treated with a flame retardant, at an ignition time of 15 s, the smoldering time is practically reduced to zero. With an increase in the concentration of the flame retardant, and the temperature of the heat treatment, the loss of material strength, breaking load, and the appearance of the fabric change slightly. Using electron scanning microscopy and energy dispersive microanalysis, it was shown that pure cotton fabric contains 68.77% carbon and 31.22% oxygen; after modification, particles of sodium – 0.02%, phosphorus – 0.04% and potassium – 0.05% are formed on the surface of the treated fabric. distributed fairly unevenly. It has been shown that in cellulosic materials modified with compositions based on sodium silicate and urea, sodium hydrogen phosphate, flame retardant properties increase. The proposed composition provides the achievement of higher fire resistance. Processing can be carried out on standard equipment of finishing enterprises without the stage of high-temperature fixation of the drug.

The formation of magnesium silicate hydrate gel is crucial in preventing magnesia aggregates from over hydrated during the construction of refractory castables since the presence of magnesium hydroxide diminish the mechanical properties of the material. This work aimed to investigate the accelerating effects of sodium hydrogen phosphate and heat treatment on the formation of magnesium silicate hydrate gel. Time-dependent pH of magnesia - silica fume slurries with and without sodium hydrogen phosphate addition and heat treatment was measured to verify the dissolution of MgO and magnesium silicate hydrate formation. The effects of sodium hydrogen phosphate were differentiable only at small added amounts, whereas heat treatment at 50 degrees Celsius performed noticeable acceleration. This observation could be applicable in molding to maintain the stability of basic refractory castables.


2002 ◽  
Vol 244 (2) ◽  
pp. 194-199 ◽  
Author(s):  
M Gunasekaran ◽  
N Vijayan ◽  
R Ramesh Babu ◽  
R Gopalakrishnan ◽  
P Ramasamy ◽  
...  

2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1102
Author(s):  
Cristian Bolaño ◽  
Sabrina Palanti ◽  
Luigi Benni ◽  
Diego Moldes

Several treatments of wood, based on laccase assisted grafting, were evaluated in this paper. Firstly, the efficacy of lignosulfonate and kraft lignin from Eucalyptus spp. as a wood preservative was assessed. Both ligno products were anchored to wood surfaces via laccase treatment in order to avoid leaching. Moreover, some of these wood preservative treatments were completed with the addition of silver nanoparticles. For comparison, a commercial product was also analyzed in terms of its fungal decay resistance during surface application, in accordance to use class 3, CEN EN 335. Secondly, the anchoring of a flame retardant based on tetrabromobisphenol-A (TBBPA) was attempted, to limit the dispersion of this toxic substance from treated wood. In both cases, kraft lignin and lignosulfonate showed an improvement in wood durability, even after leaching. However, the addition of silver nanoparticles did not improve the efficacy. On the other hand, the efficacy of TBBPA as a flame retardant was not improved by grafting it with laccase treatment or by adding O2, a co-factor of laccase.


2014 ◽  
Vol 789 ◽  
pp. 174-177 ◽  
Author(s):  
Zhi Hao Wu ◽  
Li Li Li ◽  
Shuai Shuai Jiang ◽  
Ze Xu Hu ◽  
Yu Chen Mao ◽  
...  

Recycled-polyester (RPET) was melt blended with the phosphorus-containing flame retardant (FRP) and α-zirconium phosphate (α-ZrP). The thermal properties of RPET/FRP/α-ZrP composites were analyzed. Modified RPET fibers were prepared through melt spinning of dried RPET nanocomposite chips. The mechanical properties and fire-retardant properties of RPET/FRP/α-ZrP fibers containing different α-ZrP contents were tested. The results show that the synergism of α-ZrP and FRP exerts a positive effect on the mechanical and the flame-retardant property of RPET, leading to nanocomposite fibers of 1.9cN/dtex and 31.6% limiting oxygen index (LOI) value.


Sign in / Sign up

Export Citation Format

Share Document