scholarly journals Polymorphism in populations of Corydalis subjenisseensis s. l. (Papaveraceae) in the south of the Yenisei Siberia

Author(s):  
K. K. Ryabova ◽  
I. E. Yamskikh ◽  
N. V. Stepanov

Corydalis subjenisseensis (Antipova) is a tuberous ephemeroid characterized by a high morphological diversity. During the research work genetic polymorphism of 7 populations Corydalis subjenisseensis s. l., growing in the southof the Yenisei Siberia were analyzed using ISSR markers. The amplification of genomic DNA with 8 ISSR primers yielded100 DNA amplicons of which 78 were polymorphic. The number of amplified DNA fragments, depending on the primer,varied from 9 (ISSR-17) to 21 (HB14). The maximum level of genetic variation was observed for Western Sayan populations growing in aspen and fir forests. The genetic differentiation among populations (Gst) was 0.2415, indicating a highlevel of differentiation. The similarity dendrogram performed in the TFPGA program shows a division into 2 groups: thefirst group includes the Krasnoyarsk and Khakass populations of C. subjenisseensis, the second group includes the Tanzybei populations, which are characterized by a high level of polymorphism. A similar structure is observed when buildingclusters using the Bayesian approach. 69 genotypes are divided into a maximum of 7 genetic clusters. Among the populations of the Tanzybei, individuals of presumably hybridogenic origin are found, grouped around two centers of “attraction”.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 402
Author(s):  
Noha A. El-Tayeh ◽  
Hanaa K. Galal ◽  
Magda I. Soliman ◽  
Hoida Zaki

Aerva javanica is one of Egypt’s most important traditional medicinal plants used as antidiarrheal and anthelmintic medicine and recently as an anticancer agent. In this study, variations among ten populations of Aerva javanica in different sites in the Eastern Desert of Egypt were analyzed based on morphological and ecological attributes and molecular variation expressed by Inter-Simple Sequence Repeat (ISSR) markers. Morphological diversity was higher for populations in the Wadi El-Markh and Bir Abbady regions than others. The polymorphism revealed by ten ISSR primers was 79.4% among populations. Distance trees created using the results obtained from soil variables, morphological characterizations, and molecular data showed that the highest similarity was 0.974 between Populations 8 and 9, while the lowest similarity was 0.715 between Population 1 and Population 3 regions. In conclusion, the obtained data are important to design a plan for sustainable conservation of Aerva javanica as an important medicinal plant having a wide interspecific genetic variability within various populations.


Revista CERES ◽  
2014 ◽  
Vol 61 (5) ◽  
pp. 597-604 ◽  
Author(s):  
Aline Rocha ◽  
Tânia Maria Fernandes Salomão ◽  
Dalmo Lopes de Siqueira ◽  
Cosme Damião Cruz ◽  
Luiz Carlos Chamhum Salomão

Polyembryonic seeds are characterized by the development of over one embryo in the same seed, which can be zygotic and nucellar. The objective of this work was to identify the genetic origin, whether zygotic or nucellar, of seedlings of polyembryonic seeds of 'Ubá' mango tree using ISSR markers, and relating them with the vigor of the seedlings. Thus, mangos were harvested in Visconde do Rio Branco (accession 102) and Ubá (accessions 112, 138, 152 and 159), whose seeds were germinated in plastic trays filled with washed sand. Fifty days after sowing, seedlings from five seeds of each one of the accessions 102, 112, 138, 159 and from 10 seeds of the accession 152, were analyzed. These sseedlings were characterized and evaluated for plant height, stem circumference and mass of fresh aerial part and the most vigorous seedling was the one displaying at least two of these traits higher than the other seedlings from seed. Leaves were collected for genomic DNA extraction, which was amplified using seven ISSR primers previously selected based on the amplification profile and considering the number and resolution of fragments. Zygotic seedlings were found in 18 seeds, which were the most vigorous in six seeds. The results evidenced the existence of genetic variability in orchards using seedlings grown from seeds, because the farmer usually uses the most vigorous ones, assuming that this is of nucellar origin. These results also indicate that the most vigorous seedling are not always nucellar, inasmuch as of 20% of the total seeds evaluated, the zygotic seedling was the most vigorous.


2021 ◽  
pp. 1-11
Author(s):  
Karishma Kashyap ◽  
Rasika M. Bhagwat ◽  
Sofia Banu

Abstract Khasi mandarin (Citrus reticulata Blanco) is a commercial mandarin variety grown in northeast India and one of the 175 Indian food items included in the global first food atlas. The cultivated plantations of Khasi mandarin grown prominently in the lower Brahmaputra valley of Assam, northeast India, have been genetically eroded. The lack in the efforts for conservation of genetic variability in this mandarin variety prompted diversity analysis of Khasi mandarin germplasm across the region. Thus, the study aimed to investigate genetic diversity and partitioning of the genetic variations within and among 92 populations of Khasi mandarin collected from 10 cultivated sites in Kamrup and Kamrup (M) districts of Assam, India, using Inter-Simple Sequence Repeat (ISSR) markers. The amplification of genomic DNA with 17 ISSR primers yielded 216 scorable DNA amplicons of which 177 (81.94%) were polymorphic. The average polymorphism information content was 0.39 per primer. The total genetic diversity (HT = 0.28 ± 0.03) was close to the diversity within the population (HS = 0.20 ± 0.01). A high mean coefficient of gene differentiation (GST = 0.29) reflected a high level of gene flow (Nm = 1.22), indicating high genetic differentiation among the populations. Analysis of Molecular Variance (AMOVA) showed 78% of intra-population differentiation, 21% among the population and 1% among the districts. The obtained results indicate the existence of a high level of genetic diversity in the cultivated Khasi mandarin populations, indicating the need for preservation of each existing population to revive the dying out orchards in northeast India.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 991
Author(s):  
Ana Maria Figueira Gomes ◽  
David Draper ◽  
Nascimento Nhantumbo ◽  
Rafael Massinga ◽  
José C. Ramalho ◽  
...  

Cowpea (Vigna unguiculata) is a neglected crop native to Africa, with an outstanding potential to contribute to the major challenges in food and nutrition security, as well as in agricultural sustainability. Two major issues regarding cowpea research have been highlighted in recent years—the establishment of core collections and the characterization of landraces—as crucial to the implementation of environmentally resilient and nutrition-sensitive production systems. In this work, we have collected, mapped, and characterized the morphological attributes of 61 cowpea genotypes, from 10 landraces spanning across six agro-ecological zones and three provinces in Mozambique. Our results reveal that local landraces retain a high level of morphological diversity without a specific geographical pattern, suggesting the existence of gene flow. Nevertheless, accessions from one landrace, i.e., Maringué, seem to be the most promising in terms of yield and nutrition-related parameters, and could therefore be integrated into the ongoing conservation and breeding efforts in the region towards the production of elite varieties of cowpea.


Author(s):  
Marwa Hamouda

Abstract Background Silybum marianum L. Gaertn is a medicinal plant of unique pharmaceutical properties in the treatment of liver disorders and diabetic nephropathy. Biochemical (SDS-PAGE) and molecular markers such as randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) technologies were used in this work to detect genetic diversity of 14 collections of Silybum marianum population in Egypt. Results The electrophoretic pattern of seed protein gave different molecular weight bands, ranging from 24 to 111 KDa with the presence of unique bands. RAPD results revealed a high level of polymorphism (73.2%) using 12 RAPD primers, but only eight of them gave reproducible polymorphic DNA pattern. Sixteen primers were used in the ISSR method; only ten of them yielded clearly identifiable bands. The percentage of polymorphism is about 80% of the studied samples. Conclusion The obtained data confirmed that SDS-protein, RAPD, and ISSR markers are important tools for genetic analysis for Silybum marianum and recommended to give accurate results.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Wannapimol Kriangwanich ◽  
Korakot Nganvongpanit ◽  
Kittisak Buddhachat ◽  
Puntita Siengdee ◽  
Siriwadee Chomdej ◽  
...  

Wildlife trading and the illegal hunting of wildlife are contributing factors to the biodiversity crisis that is presently unfolding across the world. The inability to control the trade of animal body parts or available biological materials is a major challenge for those who investigate wildlife crime. The effective management of this illegal trade is an important facet of wildlife forensic sciences and can be a key factor in the enforcement of effective legislation surrounding the illegal trade of protected and endangered species. However, the science of wildlife forensics is limited by the absence of a comprehensive database for wildlife investigations. Inter-simple sequence repeat markers (ISSR) coupled with high resolution melting analysis (HRM) have been effectively used for species identification of 38 mammalian species. Six primers of the ISSR markers were chosen for species identification analysis. From six ISSR primers resulting in a range of accuracy of 33.3%–100% and 100% in terms of precision in every primer. Furthermore, 161 mammalian samples were 100% distinguished to the correct species using these six ISSR primers. ISSR-HRM analysis was successfully employed in determining mammal identification among varying mammalian species, and thus could serve as an effective alternative tool or technique in the species identification process. This option would offer researchers a heightened level of convenience in terms of its performance and the ease with which researchers or field practice veterinarians would be able to interpret results in effectively identifying animal parts at wildlife investigation crime scenes.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 901-904 ◽  
Author(s):  
Claudia Goyer ◽  
Carole Beaulieu

Ten Streptomyces isolates from common scab lesions on carrots (Daucus carota) were characterized. Morphological and physiological characterization of the carrot isolates established that they were closely related to S. scabies. DNA-DNA hybridization studies were carried out between DNA from the carrot isolates and DNA from two potato strains belonging to the two genetic clusters of S. scabies. Most of the carrot isolates exhibited a high level of DNA relatedness (average of 90%) to strain EF-54, which belongs to genetic cluster 1 of S. scabies. Three carrot isolates could not be included in either S. scabies genetic cluster 1 or 2. The pathogenicity of six S. scabies isolates from potato or carrot, two isolates of S. caviscabies, and one isolate of S. acidiscabies was determined on potato, carrot, radish, beet, turnip, and parsnip. All S. scabies isolates were pathogenic on carrot and radish, but pathogenicity on beet, parsnip, turnip, and potato was variable. Even though S. acidiscabies and S. caviscabies until now have been isolated only from potato, we demonstrated that isolates of these species also could infect other crops, such as radish, carrot, parsnip, and turnip.


2016 ◽  
Vol 256 ◽  
pp. 319-327 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
Ivano Gattelli

During the last decades under the enthusiastic and competent guidance of Mr Chiarmetta SSM processes attained in Italy at Stampal Spa (Torino) an unquestionable high level of industrial development with the production of large numbers of high performance automotive parts, like variety of suspension support, engine suspension mounts, steering knuckle, front suspension wheel, arm and rear axle. Among the most highlighted findings SSM processes demonstrated their capability to reduce the existing gap between casting and forging, moreover during such a processes there are the opportunity to better control the defect level.Purpose of this paper is to highlight the research work and the SSM industrial production attained and developed by Mr G.L. Chiarmetta, as well as to give an overview concerning some alternative methods for the production of enhanced performance light alloys components for critical industrial applications and to present an analysis of a new rheocasting process suitable for the manufacturing of high performance industrial components.


2002 ◽  
Vol 205 (20) ◽  
pp. 3261-3270 ◽  
Author(s):  
Heidi K. Grønlien ◽  
Christian Stock ◽  
Marilynn S. Aihara ◽  
Richard D. Allen ◽  
Yutaka Naitoh

SUMMARYThe electric potential of the contractile vacuole (CV) of Paramecium multimicronucleatum was measured in situ using microelectrodes,one placed in the CV and the other (reference electrode) in the cytosol of a living cell. The CV potential in a mechanically compressed cell increased in a stepwise manner to a maximal value (approximately 80 mV) early in the fluid-filling phase. This stepwise change was caused by the consecutive reattachment to the CV of the radial arms, where the electrogenic sites are located. The current generated by a single arm was approximately 1.3×10-10 A. When cells adapted to a hypotonic solution were exposed to a hypertonic solution, the rate of fluid segregation, RCVC, in the contractile vacuole complex (CVC) diminished at the same time as immunological labelling for V-ATPase disappeared from the radial arms. When the cells were re-exposed to the previous hypotonic solution, the CV potential, which had presumably dropped to near zero after the cell's exposure to the hypertonic solution, gradually returned to its maximum level. This increase in the CV potential occurred in parallel with the recovery of immunological labelling for V-ATPase in the radial arm and the resumption of RCVC or fluid segregation. Concanamycin B, a potent V-ATPase inhibitor, brought about significant decreases in both the CV potential and RCVC. We confirm that (i) the electrogenic site of the radial arm is situated in the decorated spongiome, and (ii) the V-ATPase in the decorated spongiome is electrogenic and is necessary for fluid segregation in the CVC. The CV potential remained at a constant high level(approximately 80 mV), whereas RCVC varied between cells depending on the osmolarity of the adaptation solution. Moreover, the CV potential did not change even though RCVC increased when cells adapted to one osmolarity were exposed to a lower osmolarity, implying that RCVC is not directly correlated with the number of functional V-ATPase complexes present in the CVC.


2021 ◽  
Vol 320 ◽  
pp. 198-203
Author(s):  
Anna Bondaryeva ◽  
Olena Mokrousova ◽  
Olena Okhmat

The work is focused on obtaining hybrid pigments by adsorption of anionic dyes on positively charged montmorillonite. Modification of the sodium form of montmorillonite by chromium hydroxocomplexes was provided to ensure effective adsorption of anionic dyes on the surface of mineral particles. A high level of adsorption of anionic dyes as a result of steric factor was revealed. It was shown that the adsorption of dyes depended on the pH of the medium and was characterized by a maximum level at pH 4.5 – 6.0. The scheme of obtaining hybrid pigments, which were characterized by good сovering ability, resistance to stratification, especially saturated and intense colour was proposed.


Sign in / Sign up

Export Citation Format

Share Document