scholarly journals SUITABLE PRODUCTION TOOLS SELECTION WITH THE USE OF EVOLUTIONARY ALGORITHMS

2020 ◽  
Vol 60 (1) ◽  
pp. 56-64
Author(s):  
Petr Hynek ◽  
Viktor Kreibich ◽  
Roman Firt

This paper deals with the use of a production equipment simulation in the design of production systems, more specifically the welding equipment in the automotive industry. Based on the simulation results, a matrix, which defines the possibility of using given manufacturing tools (in this case welding guns are considered) to connect the plates using the electrical resistance spot welding process, is created. This matrix generates a set of several numbers of solutions depending on other parameters, such as the lowest price, the lowest number of used welding guns, etc. The goal is to solve this task. The solution is presented using mathematical programming. Specifically, the method of genetic evolutionary algorithms is being used. The Solver software is used to optimize the selection of the welding guns’ combination. The Solver is an add-on in MS Excel. The case study shows 15 welding points weldment on which the availability of 20 types of welding guns was simulated. The result is an ideal combination of 2 types of guns for the lowest price.

Volume 3 ◽  
2004 ◽  
Author(s):  
Clive I. Kerr ◽  
Rajkumar Roy ◽  
Peter J. Sackett

In the automotive industry the activities of documenting the design options and generating the necessary request for quotations, for Tier 1 system suppliers to be awarded contracts for design and development, is complex and time-consuming since these activities are predominately manual and paper-based. Thus, a knowledge-based tool is being developed to aid the selection of the design options for vehicle systems during competitive tendering. The tool is based on ontologies in order to provide a common and shared definition for the options available for a given vehicle system. An overview of this approach is provided and, as a ‘proof of concept’, a case study involving seating systems is presented. This paper shows, through the seating system case study, how the functionalities and features of a vehicle system can be selected and documented in order to streamline the business process of contracting out product development through the supply chain.


2021 ◽  
Vol 55 (2) ◽  
pp. 201-206
Author(s):  
Aleksija Djuric ◽  
Dragan Milčić ◽  
Damjan Klobčar ◽  
Biljana Marković

Resistance spot welding (RSW) is still the most used form of welding in the automotive industry, primarily for welding steel. One of the advanced steels used in the automotive industry is dual-phase steel, so it is important to properly select the welding parameter for these steels. Therefore, this paper presents multi-objective optimization in the RSW welding process of DP 500 steel. The paper considers three different mechanical characteristics i.e., the failure load (F), failure displacement (l) and weld nugget diameter (D), as all these welding characteristics play significant roles in evaluating the quality of spot welding. The results show that the welding current is the most influential parameter with respect to the mechanical characteristics. The effect of welding time on the weld quality is the least significant. The optimal parameters for welding DP 500 steel obtained in this paper are weld current 8 kA, electrode force 4.91 kN and weld time 400 ms.


Author(s):  
Ehsan Najafi ◽  
Amin Mirzaei ◽  
Mahdi Mahdi Rezvanyvardom ◽  
Mahdi Zolfaghar

PV plants are increasing all over the world and they are becoming a distinct part of electric grids. Due to abundance of solar irradiation and almost constant amount of it in certain geographical latitudes, selection of proper capacity of PV plants depends mostly on available places for the site. in this paper, important measures for safe connection of a PV plant in terms of voltage requirements are addressed and several guidelines are introduced for this purpose. In addition, simulation results are included to prove some of the mentioned suggestions. a general algorithm is finally proposed to show the directions for safe connection of PV plants.


Author(s):  
Varshan Beik ◽  
Hormoz Marzbani ◽  
Reza Jazar

Spot welding is the most common technique used to join sheet metals in the automotive industry due to the fast rate of production. Optimising the welding process including the sequence, number and location of the welds would significantly improve the quality of the final product and production cost. This paper presents an overview on the available methods to plan and optimise various aspects of the welding process including welding sequence, weld quantity and location. Firstly, the welding concept in the automotive industry is briefly reviewed. Secondly, the welding process optimisation with emphasis on the welding sequence is discussed. The common gaps and challenges are identified and, lastly, future research to plan and optimise the welding sequence in the automotive body is outlined.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Harry Purnama ◽  
Jos Istiyanto

The application of spot-welding in the automotive industry, especially the electric-based vehicle frame structure, has been optimized to meet passenger and battery compartment safety factors. The present numerical study of the electric-based vehicle frame structure with the top hat cross-sectional model validated the experimental results of reference, which then modified the spot-welding pitch to determine the crashworthiness effect and criteria. The numerical simulation results show that reducing spot-welding pitch in vertical direction can increase energy absorption (EA) by 1.70% - 9.91%, while bringing spot-welding pitch closer to the flange's outer edge can reduce its maximum force (Fmax) by 8.11% - 21.67%. Keywords: Spot-welding; Top Hat Structure; Crashworthiness; Numerical Simulation; Electric Vehicle.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erik Flores-Garcia ◽  
Jessica Bruch ◽  
Magnus Wiktorsson ◽  
Mats Jackson

Purpose The purpose of this paper is to explore the selection of decision-making approaches at manufacturing companies when implementing process innovations. Design/methodology/approach This study reviews the current understanding of decision structuredness for determining a decision-making approach and conducts a case study based on an interactive research approach at a global manufacturer. Findings The findings show the correspondence of intuitive, normative and combined intuitive and normative decision-making approaches in relation to varying degrees of equivocality and analyzability. Accordingly, the conditions for determining a decision-making choice when implementing process innovations are revealed. Research limitations/implications This study contributes to increased understanding of the combined use of intuitive and normative decision making in production system design. Practical implications Empirical data are drawn from two projects in the heavy-vehicle industry. The study describes decisions, from start to finish, and the corresponding decision-making approaches when implementing process innovations. These findings are of value to staff responsible for the design of production systems. Originality/value Unlike prior conceptual studies, this study considers normative, intuitive and combined intuitive and normative decision making. In addition, this study extends the current understanding of decision structuredness and discloses the correspondence of decision-making approaches to varying degrees of equivocality and analyzability.


Author(s):  
Karim H. Muci-Küchler ◽  
Sindhura Kalagara ◽  
William J. Arbegast

Friction stir spot welding (FSSW) is a solid state joining technology that has the potential to be a replacement for processes like resistance spot welding and rivet technology in certain applications. To optimize the process parameters and to develop FSSW tools, it is important to understand the physics of this complex process that involves frictional contact, high temperature gradients, and large deformations. This paper presents a fully coupled thermo-mechanical finite element model (FEM) model of the plunge phase of a modified refill FSSW. The model was developed in Abaqus/Explicit and the simulation results included the temperature, deformation, stress, and strain distributions in the plates being joined. An experimental study was also conducted to validate the temperatures predicted by the model. The simulation results were in good agreement with the temperatures measured in the experiment. Also, the model was able to predict in a reasonable fashion the stresses and plastic strains in the plates.


Sign in / Sign up

Export Citation Format

Share Document