scholarly journals ANALYSIS OF SPOT-WELDING PITCH ON TOP HAT STRUCTURE AGAINST CRASHWORTHINESS CRITERIA

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Harry Purnama ◽  
Jos Istiyanto

The application of spot-welding in the automotive industry, especially the electric-based vehicle frame structure, has been optimized to meet passenger and battery compartment safety factors. The present numerical study of the electric-based vehicle frame structure with the top hat cross-sectional model validated the experimental results of reference, which then modified the spot-welding pitch to determine the crashworthiness effect and criteria. The numerical simulation results show that reducing spot-welding pitch in vertical direction can increase energy absorption (EA) by 1.70% - 9.91%, while bringing spot-welding pitch closer to the flange's outer edge can reduce its maximum force (Fmax) by 8.11% - 21.67%. Keywords: Spot-welding; Top Hat Structure; Crashworthiness; Numerical Simulation; Electric Vehicle.

2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Author(s):  
Ji Yang ◽  
Zhiyong Hao ◽  
Ruwei Ge ◽  
Liansheng Wang ◽  
Kang Zheng

The engine cooling module consists of condenser, radiator and fan (CRFM), which has long been recognized as a main source of sound and vibration in the automotive industry. As the engine becomes increasingly compact and powerful, customers gradually have higher expectations for automobile NVH performance than ever before. Thus the reduction of noise and vibration induced by CRFM becomes critical, which can greatly influence overall NVH performance. Combined with experimental and numerical methods, this paper focuses on the identification and optimization of steering wheel (SW) vibration induced by CRFM for a vehicle with V6 engine while engine idling. The numerical model established in this paper, based on Matlab and taking chassis vibration into account, can predict and optimize the vibration of CRFM under specific working condition with the help of energy decoupling and Newmark-Beta methodology. The optimization design of CRFM mainly involves the stiffness, position and angle of isolators. The numerical simulation results are validated experimentally, which can help further design of CRFM.


Author(s):  
Q Wu ◽  
Q Ye ◽  
G X Meng

This article introduces a new vortex gripper with a diversion body. Vortex gripper, as a pneumatic non-contact handling device, can generate lifting force to hold a workpiece without any contact. In order to predict the characteristics of this new vortex gripper, including pressure distribution on the upper surface of the workpiece, lifting force, supporting stiffness, and flowrate, a computational fluid dynamics study has been carried out. In the vortex cup, air swirling flow is a complex turbulent one; so Reynolds stress model (RSM) was used to describe internal air swirling flow. In addition, an experiment was carried out to study the characteristics of the vortex gripper. When compared with the experimental results, the reliability of numerical simulation results by RSM was verified. The vortex gripper with a diversion body could generate greater lifting force when compared with those designed by Xin et al. with the same air consumption. Therefore, the efficiency of the vortex gripper is improved.


2012 ◽  
Vol 550-553 ◽  
pp. 3194-3200
Author(s):  
Guang Cai Gao ◽  
Jian Jun Wang ◽  
You Hai Jin

The gas flow field in the swirl tube was studied by experimental measurement and numerical simulation. The results show that the simulation results based on the Reynolds stress turbulent model is in good agreement with the measured results probed by the five orifice Pitot-tube. Meantime, it is analyzed that there is short cut stream at the end of the exit tube, and at the dust discharge jaws, the particles are prone to be re-entrained from the hopper. All results above provide a base for further research on the optimization of the structure and the improvement of the separation performance of the swirl tube.


Author(s):  
Wang Liangfeng ◽  
Mao Luqin ◽  
Xiang Kangshen ◽  
Duan Wenhua ◽  
Tong Hang ◽  
...  

Abstract The present study is focused on the fan tone noise reduction with leaned and swept stator blade. A hybrid URANS/Goldstein’s equations method is used to calculate the unsteady flow and tone noise of a high loaded axial-flow fan. The numerical simulation results show that the fan tone noise will be increased with negative angle lean, while it will be reduced with positive lean angle. The higher the harmonic number, the larger the noise reduction with positive lean angle blade. It is found that when the stator blade sweeps back of 30 degrees, the fan tone noise at the fan inlet can be reduced by 5.5 dB, while the fan tone noise at the fan outlet can be reduced by 9.8dB. It is also found that the combined leaned and swept blade has the largest noise reduction. When the fan stator blade lean angle and sweep angle are both 30 degrees, the fan inlet tone noise can be reduced by 8.5 dB, while the fan outlet tone noise can be reduced by 17dB. The numerical simulation results indicate that the influence of blade lean and sweep on fan mass flow is less than 1% within the scope of this study. The negative lean angle of stator blade can improve the aerodynamic performance, but the positive lean angle of the stator blade will reduce the total pressure ratio and isentropic efficiency of the fan.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rong Hu ◽  
Zheming Zhu ◽  
Jun Xie ◽  
Dingjun Xiao

A mixed failure criterion, which combined the modified maximum principal stress criterion with the damage model of tensile crack softening, was developed to simulate crack propagation of rock under blasting loads. In order to validate the proposed model, a set of blasting models with a crack and a borehole with different incident angles with the crack were established. By using this model, the property of crack propagation was investigated. The linear equation of state (EOS) was used for rock, and the JWL EOS was applied to the explosive. In order to validate the numerical simulation results, experiments by using PMMA (polymethyl methacrylate) with a crack and a borehole were carried out. The charge structure and incident angle of the blasting experimental model were the same as those in the numerical models. The experiment results agree with the numerical simulation results.


2012 ◽  
Vol 516-517 ◽  
pp. 966-969
Author(s):  
Yi Zhang Fan ◽  
Zhi Gang Zuo ◽  
Shu Hong Liu ◽  
Yu Jun Sha ◽  
Yu Lin Wu

Centrifugal pumps adopt annular casings instead of volute casings when working in high temperature and high pressure conditions, which results in conservative safety factors in sacrifice of hydraulic efficiency. This paper presents numerical simulations on two assembly modification methods for one annular casing imitating the volute casing to improve hydraulic performance. Method one was the eccentric axis method. Method two was the extended vane method. Numerical simulation results, given by CFX, showed that both the two method could increase the hydraulic efficiency and head while rise in radial force was small.


2016 ◽  
Vol 67 (6) ◽  
pp. 414-420
Author(s):  
Zhifu Yin ◽  
Helin Zou

Abstract PDMS (polydimethylsiloxane) collapse method is a simple and low cost approach for micronanochannel fabrication. However, the bonding pressure which influences the size of the final PDMS micro/nanochannels has not yet been studied. In this study, the effect of the bonding pressure on the size and maximum local stress of the PDMS micronanochannels was investigated by both experimental and numerical simulation method. The results show that when the bonding pressure is lower than 0.15 MPa the experiment results can agree well with the simulation results. The fluorescent images demonstrate that there is no blocking or leakage over the entire micro/nanochannels.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4961
Author(s):  
Yi Yin ◽  
Zhijian Liu ◽  
Jie Zheng ◽  
Liang Chen ◽  
Sen Wu ◽  
...  

Wear debris detection is an effective method to determine the running state of the machine. Recently, the planar inductor is commonly used to detect wear debris. The previous studies have found that the inductive signal would be varied while changing the position of wear debris pass through. However, the effect of position on the wear debris detection is not well understood. In this paper, a novel detection system in which the position of wear debris pass through could be adjusted precisely is designed. By changing the position in horizontal or vertical direction, the inductive signals of the wear debris were acquired. In the horizontal direction, the experimental results show that the amplitude of the inductive signal first increases and then decreases when the position changes from the center of the planar inductor to the outer. The maximum inductive signal appears when the wear debris pass through the edge of the inner coil, which is 20% higher than that for the center and much higher than that for the edge of outer coil. In the vertical direction, the signal decreases almost linearly when the position is away from the planar inductor. For every 0.1 mm step far away the planar inductor, the signal amplitude drops by approximately 10%. The variation trend of our experimental results is consistent with the numerical simulation results of magnetic intensity around the planar inductor.


2012 ◽  
Vol 209-211 ◽  
pp. 751-754
Author(s):  
Ming Jin Zhang ◽  
Hua Qing Zhang ◽  
Yan Hua Yang

The waterway of Jiangxinzhou to Wujiang section is the only hindering navigation section in Wuhu to Nanjing of the lower reaches of the Yangtze River. Because of the unsteadiness of the main stream, the navigation condition in this section tends to worse, in which the regulation work is sorely needed and more important. The major problem for channel regulation in this section is the design of regulation project. In this paper, the 2D numerical model for simulating the flow and sediment in the waterway of Jiangxinzhou-Wujiang section is used to analyze these questions. From the numerical simulation results, we know that the overall navigation regulation project can solve the problem of hindering navigation.


Sign in / Sign up

Export Citation Format

Share Document