scholarly journals ELECTRICAL PROPERTIES OF FLY ASH GEOPOLYMER COMPOSITES WITH GRAPHITE CONDUCTIVE ADMIXTURES

2019 ◽  
Vol 22 ◽  
pp. 72-76 ◽  
Author(s):  
Celílie Mizerová ◽  
Ivo Kusák ◽  
Pavel Rovnaník

Construction materials with increased electrical conductivity could be possibly used in health monitoring of structures (stress, deformation, damages), their maintenance or traffic monitoring. The aim of this study was the application of functional filler and its influence on the electrical properties of the alkali-activated fly ash matrix. The graphite powder was added to the reference material in the amount of 2–10 %. Besides the assessment of the critical amount of filler necessary to achieve a percolation threshold in the structure of the composite, the effect on the electrical properties of the matrix (resistance, capacitance, conductivity) was determined. The optimal amount of filler was also determined with respect to the changes in microstructure of the binder and its mechanical properties.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 511 ◽  
Author(s):  
Eyerusalem A. Taye ◽  
Judith A. Roether ◽  
Dirk W. Schubert ◽  
Daniel T. Redda ◽  
Aldo R. Boccaccini

Novel hemp fiber reinforced geopolymer composites were fabricated. The matrix was a new geopolymer based on a mixture of red mud and fly ash. Chopped, randomly oriented hemp fibers were used as reinforcement. The mechanical properties of the geopolymer composite, such as diametral tensile (DTS) (or Brazilian tensile) strength and compressive strength (CS), were measured. The geopolymer composites reinforced with 9 vol.% and 3 vol.% hemp fiber yielded average DTS values of 5.5 MPa and average CS values of 40 MPa. Scanning electron microscopy (SEM) studies were carried out to evaluate the microstructure and fracture surfaces of the composites. The results indicated that the addition of hemp fiber is a promising approach to improve the mechanical strength as well as to modify the failure mechanism of the geopolymer, which changed from brittle to “pseudo-ductile”.


2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


2015 ◽  
Vol 244 ◽  
pp. 140-145 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Fly ash is a well utilizable secondary raw material for the production of alkali activated construction materials. It is a significant alumina-silicates source suitable for the chemical reaction resulting in hardened composites. Physical and chemical properties of fly ashes as a co-product of coal burning mainly depend on characteristics of coal, burning temperature and combustion conditions. High variability of the properties of fly ash causes an uncertainty in the properties of alkali activated mortars. Time behaviour of the composition of the fly ash produced in a heating plant located in Košice, Slovakia as well as leaching behaviour of both alumina and silica from particular batches during one-year period was documented. Leaching tests were carried out using the distilled water and alkali solutions with three different concentrations. Both compressive and tensile strengths of alkali activated mortars were measured, and the correlation between the mechanical properties of hardened mortars and the chemical composition of fly ashes as well as their leaching characteristics was investigated.


2018 ◽  
Vol 156 ◽  
pp. 05018 ◽  
Author(s):  
Ngo Janne Pauline S. ◽  
Promentilla Michael Angelo B.

The growing environmental and economic concerns have led to the need for more sustainable construction materials. The development of foamed geopolymer combines the benefit of reduced environmental footprint and attractive properties of geopolymer technology with foam concrete’s advantages of being lightweight, insulating and energy-saving. In this study, alkali-treated abaca fiber-reinforced geopolymer composites foamed with H2O2 were developed using fly ash as the geopolymer precursor. The effects of abaca fiber loading, foaming agent dosage, and curing temperature on mechanical strength were evaluated using Box-Behken design of experiment with three points replicated. Volumetric weight of samples ranged from 1966 kg/m3 to 2249 kg/m3. Measured compressive strength and flexural ranged from 19.56 MPa to 36.84 MPa, and 2.41 MPa to 6.25 MPa, respectively. Results suggest enhancement of compressive strength by abaca reinforcement and elevated temperature curing. Results, however, indicate a strong interaction between curing temperature and foaming agent dosage, which observably caused the composite’s compressive strength to decline when simultaneously set at high levels. Foaming agent dosage was the only factor detected to significantly affect flexural strength.


2014 ◽  
Vol 803 ◽  
pp. 144-147 ◽  
Author(s):  
J. Temuujin ◽  
A. Minjigmaa ◽  
U. Bayarzul ◽  
Ts. Zolzaya ◽  
B. Davaabal ◽  
...  

With the increasing rate of depletion of natural raw materials for production of building materials, their sustainable usage is clearly an important topic for consideration. For instance, 1 tonne ordinary Portland cement (OPC) requires 1.7 tonnes of raw materials, 1.0 tonne of coal and 100 kWh of electricity. One tonne of cement emits 0.8 - 1 tonne of CO2 into atmosphere globally contributing ~5% of total manmade carbon dioxide. Therefore, the development of new, sustainable, low carbon footprint construction materials is an important task for materials scientists and civil engineers. One type of binder that is attracting particular attention around the world is alkali-aluminosilicate chemistry based material the so-called geopolymers. In this presentation we will discuss the fundamentals of geopolymer chemistry and the similarities to and differences from conventional alkali activated materials chemistry. Particular attention will be given to our latest results on the preparation of geopolymer type paste and concrete from fly ash. Mechanical activation of fly ash caused a decrease in porosity with a partial amorphisation of the crystalline constituents. Geopolymer type paste prepared from 30 minute milled Darkhan pond ash showed increase in 7 day compressive strengths by 7 times reaching of 15.4 (4.6) MPa. Keywords: Geopolymer binder, alkali-activated materials, coal combustion by products


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1616 ◽  
Author(s):  
Pavel Rovnaník ◽  
Ivo Kusák ◽  
Patrik Bayer ◽  
Pavel Schmid ◽  
Lukáš Fiala

The electrical properties of concrete are gaining their importance for the application in building construction. In this study, graphite powder was added to alkali-activated slag mortar as an electrically conductive filler in order to enhance the mortar’s conductive properties. The amount of graphite ranged from 1% to 30% of the slag mass. The effect of the graphite powder on the resistivity, capacitance, mechanical properties, and microstructure of the composite was investigated. Selected mixtures were then used for the testing of self-sensing properties under compressive loading. The results show that the addition of an amount of graphite equal to up to 10% of the slag mass improved the electrical properties of the alkali-activated slag. Higher amounts of filler did not provide any further improvement in electrical properties at lower AC frequencies but caused a strong deterioration in mechanical properties. The best self-sensing properties were achieved for the mixture with 10 wt% of graphite, but only at low compressive stresses of up to 6 MPa.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mridul Garg ◽  
Aakanksha Pundir

The characterization and influence of brine sludge on the properties of cement-fly ash-sludge binders are presented. The reaction products formed during the hydration of binder provide an interlocking framework to physically encapsulate the waste particles and are responsible for the development of strength. The utilization of brine sludge in making paver blocks and bricks and the effect of sludge concentration on the engineering properties of these products are also discussed. These results clearly exhibited that brine sludge up to 35 and 25% can safely be utilized for making paver blocks and bricks, respectively. The leachability studies confirm that the metals ions and impurities in the sludge are substantially fixed in the matrix and do not readily leach from there. The utilization of brine sludge in construction materials could serve as an alternative solution to disposal and reduce pollution.


Sign in / Sign up

Export Citation Format

Share Document