scholarly journals Barcode based localization system in indoor environment

2014 ◽  
Vol 13 ◽  
pp. 31-36
Author(s):  
Ľubica Ilkovičová ◽  
Ján Erdélyi ◽  
Alojz Kopáčik

Nowadays, in the era of intelligent buildings, there is a need to create indoornavigation systems, what is steadily a challenge. QR (Quick Response) codesprovide accurate localization also in indoor environment, where other navigationtechniques (e.g. GPS) are not available. The paper deals with the issues of posi-tioning using QR codes, solved at the Department of Surveying, Faculty of CivilEngineering SUT in Bratislava. Operating principle of QR codes, description ofthe application for positioning in indoor environment based on OS Android forsmartphones are described.

Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Author(s):  
K. Ravikumar ◽  
R. Geetha

Quick Response (QR) codes are versatile. a chunk of long trilingual text, a connected URL, an automatic SMS message, an identity card or simply regarding any data is embedded into the two-dimensional barcode. as well as moderate equipped mobile devices, QR Codes will connect the users to the data quickly and simply. The operations to retrieve or store QR codes are unbelievably easy and fast, and with mobile devices, build them the best academic tools for teaching and learning. QR codes are all over and most of the people have mobile phones equipped with QR code readers. though QR codes existed for over fifteen years, there arent such a lot of analysis applications during this space.


Author(s):  
Satoshi Ono ◽  
◽  
Kensuke Morinaga ◽  
Shigeru Nakayama

To improve on our previously proposed but problem-plagued innovation for generating animated and illustrated Quick Response (QR) codes, this paper proposes a method which formulates the animated QR code generation problem as an optimization problem rather than as a set of still QR code decoration problems. The proposed method also uses optimization operators designed for this problem and quality evaluation to maintain natural, smooth movement. Experiments demonstrate that the proposed method can generate animated QR codes involve a maximum of eight illustrations moving inside the code which maintaining decoding feasibility and smooth illustration movement.<FONT color="red" size="3">Erratum<br /></FONT> <FONT color="red" size="2">Due to a wrong manipulation during the correction of the proofs of the above paper, the running head title (short title) was incorrect. The correct running head title should have read as "Animated Two–Dimensional Barcode Generation."</FONT>


Author(s):  
P. Boguslawski ◽  
L. Mahdjoubi ◽  
V. Zverovich ◽  
F. Fadli

Nowadays, in a rapidly developing urban environment with bigger and higher public buildings, disasters causing emergency situations and casualties are unavoidable. Preparedness and quick response are crucial issues saving human lives. Available information about an emergency scene, such as a building structure, helps for decision making and organizing rescue operations. Models supporting decision-making should be available in real, or near-real, time. Thus, good quality models that allow implementation of automated methods are highly desirable. This paper presents details of the recently developed method for automated generation of variable density navigable networks in a 3D indoor environment, including a full 3D topological model, which may be used not only for standard navigation but also for finding safe routes and simulating hazard and phenomena associated with disasters such as fire spread and heat transfer.


2019 ◽  
Vol 6 (3) ◽  
pp. 172-174
Author(s):  
Jemina Oremeyi Onimowo ◽  
Gary Knowles ◽  
Gemma Wrighton ◽  
Manisha Shah

For clinical simulation to be of maximum benefit, obtaining timely feedback from participants is vital in ensuring suitable improvements are made in the content and delivery of teaching in this setting. This report reviews the literature and describes the use of quick response (QR) codes instead of paper feedback forms following simulation-based learning sessions for fourth-year medical students. This newly implemented electronic method of collecting feedback has resulted in an increase in feedback response rate, reduction in administrative workload and a reduced carbon footprint. We also discuss other QR code-based innovations currently being implemented in this setting.


2019 ◽  
Vol 19 (6) ◽  
pp. e22
Author(s):  
Jennifer Fishbein ◽  
Kimberly Lau ◽  
Stephen Barone

2019 ◽  
Vol 79 (9-10) ◽  
pp. 5719-5741 ◽  
Author(s):  
Longdan Tan ◽  
Yuliang Lu ◽  
Xuehu Yan ◽  
Lintao Liu ◽  
Xuan Zhou

AbstractQuick response (QR) codes are becoming increasingly popular in various areas of life due to the advantages of the error correction capacity, the ability to be scanned quickly and the capacity to contain meaningful content. The distribution of dark and light modules of a QR code looks random, but the content of a code can be decoded by a standard QR reader. Thus, a QR code is often used in combination with visual secret sharing (VSS) to generate meaningful shadows. There may be some losses in the process of distribution and preservation of the shadows. To recover secret images with high quality, it is necessary to consider the scheme’s robustness. However, few studies examine robustness of VSS combined with QR codes. In this paper, we propose a robust (k, n)-threshold XOR-ed VSS (XVSS) scheme based on a QR code with the error correction ability. Compared with OR-ed VSS (OVSS), XVSS can recover the secret image losslessly, and the amount of computation needed is low. Since the standard QR encoder does not check if the padding codewords are correct during the encoding phase, we replace padding codewords by initial shadows shared from the secret image using XVSS to generate QR code shadows. As a result, the shadows can be decoded normally, and their error correction abilities are preserved. Once all the shadows have been collected, the secret image can be recovered losslessly. More importantly, if some conventional image attacks, including rotation, JPEG compression, Gaussian noise, salt-and-pepper noise, cropping, resizing, and even the addition of camera and screen noises are performed on the shadows, the secret image can still be recovered. The experimental results and comparisons demonstrate the effectiveness of our scheme.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 448 ◽  
Author(s):  
Xiaohao Hu ◽  
Zai Luo ◽  
Wensong Jiang

Aiming at the problems of low localization accuracy and complicated localization methods of the automatic guided vehicle (AGV) in the current automatic storage and transportation process, a combined localization method based on the ultra-wideband (UWB) and the visual guidance is proposed. Both the UWB localization method and the monocular vision localization method are applied to the indoor location of the AGV. According to the corner points of an ArUco code fixed on the AGV body, the monocular vision localization method can solve the pose information of the AGV by the PnP algorithm in real-time. As an auxiliary localization method, the UWB localization method is called to locate the AGV coordinates. The distance from the tag on the AGV body to the surrounding anchors is measured by the time of flight (TOF) ranging algorithm, and the actual coordinates of the AGV are calculated by the trilateral centroid localization algorithm. Then, the localization data of the UWB is corrected by the mean compensation method to obtain a consistent and accurate localization trajectory. The experiment result shows that this localization system has an error of 15mm, which meets the needs of AGV location in the process of automated storage and transportation.


Sign in / Sign up

Export Citation Format

Share Document