The Transcription Factor CP2-like 1 Is Expressed in Very Small Embryonic-like Stem Cells and Other Adult Stem Cells: Implications for Cancer Stem Cells

2017 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Hye-Yeon Lee ◽  
Hyein Ju ◽  
Jinbeom Heo ◽  
YongHwan Kim ◽  
Jisun Lim ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.


MedChemComm ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 21-52 ◽  
Author(s):  
Anthony R. Martin ◽  
Cyril Ronco ◽  
Luc Demange ◽  
Rachid Benhida

In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Audrey Chabrat ◽  
Emmanuelle Lacassagne ◽  
Rodolphe Billiras ◽  
Sophie Landron ◽  
Amélie Pontisso-Mahout ◽  
...  

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific in vitro models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson’s disease. Disease models based on cell reprogramming strategies, using either human-induced pluripotent stem cells or transcription factor-mediated transdifferentiation, are among the most investigated strategies. However, multipotent adult stem cells remain of high interest to devise direct conversion protocols and establish in vitro models that could bypass certain limitations associated with reprogramming strategies. Here, we report the development of a six-step chemically defined protocol that drives the transdifferentiation of human nasal olfactory stem cells into dopaminergic neurons. Morphological changes were progressively accompanied by modifications matching transcript and protein dopaminergic signatures such as LIM homeobox transcription factor 1 alpha (LMX1A), LMX1B, and tyrosine hydroxylase (TH) expression, within 42 days of differentiation. Phenotypic changes were confirmed by the production of dopamine from differentiated neurons. This new strategy paves the way to develop more disease-relevant models by establishing reprogramming-free patient-specific dopaminergic cell models for drug screening and/or target validation for neurodegenerative diseases.


2017 ◽  
Author(s):  
Jérôme Bohère ◽  
Alexandra Mancheno-Ferris ◽  
Kohsuke Akino ◽  
Yuya Yamabe ◽  
Sachi Inagaki ◽  
...  

AbstractTo compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life yet remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) ofDrosophilaand required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosisDIAP1. These data therefore identify Svb as a novel nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.


Sign in / Sign up

Export Citation Format

Share Document