Molecular Study of Cs and CO2 Adsorption Sites in Smectite Nanoparticles

Author(s):  
Kiminori Sato ◽  
Kazuomi Numata
2021 ◽  
Author(s):  
Xiu-Yuan Li ◽  
Wang Ying-Bo ◽  
Song Yan ◽  
Xiang Dan ◽  
Chaozheng He

Abstract A new porous metal-organic framework, [Pb5(Ac)7(nIm)3]n (1), has been successfully synthesized by employing 2-nitroimidazole ligand and Pb2+ ion. 1 contains novel the ribbon-shaped Pb-O SBU and reveals a 2D porous framework with a 1D tubular channel. Moreover, 1 shows moderate adsorption uptake towards CO2 and luminescence properties from intraligand charge transfer. We further confirmed nitro group and metal ion are important adsorption sites by GCMC simulations, and the electronic structures of 1 was investigated.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3294 ◽  
Author(s):  
Zhenjian Liu ◽  
Zhenyu Zhang ◽  
Xiaoqian Liu ◽  
Tengfei Wu ◽  
Xidong Du

Carbon dioxide (CO2) has been used to replace coal seam gas for recovery enhancement and carbon sequestration. To better understand the alternations of coal seam in response to CO2 sequestration, the properties of four different coals before and after supercritical CO2 (ScCO2) exposure at 40 °C and 16 MPa were analyzed with Fourier Transform infrared spectroscopy (FTIR), low-pressure nitrogen, and CO2 adsorption methods. Further, high-pressure CO2 adsorption isotherms were performed at 40 °C using a gravimetric method. The results indicate that the density of functional groups and mineral matters on coal surface decreased after ScCO2 exposure, especially for low-rank coal. With ScCO2 exposure, only minimal changes in pore shape were observed for various rank coals. However, the micropore specific surface area (SSA) and pore volume increased while the values for mesopore decreased as determined by low-pressure N2 and CO2 adsorption. The combined effects of surface property and pore structure alterations lead to a higher CO2 adsorption capacity at lower pressures but lower CO2 adsorption capacity at higher pressures. Langmuir model fitting shows a decreasing trend in monolayer capacity after ScCO2 exposure, indicating an elimination of the adsorption sites. The results provide new insights for the long-term safety for the evaluation of CO2-enhanced coal seam gas recovery.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5293
Author(s):  
Like Ouyang ◽  
Jianfei Xiao ◽  
Housheng Jiang ◽  
Shaojun Yuan

CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2831
Author(s):  
Martin Ravutsov ◽  
Yavor Mitrev ◽  
Pavletta Shestakova ◽  
Hristina Lazarova ◽  
Svilen Simeonov ◽  
...  

The post-synthesis procedure for cyclic amine (morpholine and 1-methylpiperazine) modified mesoporous MCM-48 and SBA-15 silicas was developed. The procedure for preparation of the modified mesoporous materials does not affect the structural characteristics of the initial mesoporous silicas strongly. The initial and modified materials were characterized by XRD, N2 physisorption, thermal analysis, and solid-state NMR. The CO2 adsorption of the obtained materials was tested under dynamic and equilibrium conditions. The NMR data revealed the formation of different CO2 adsorbed forms. The materials exhibited high CO2 absorption capacity lying above the benchmark value of 2 mmol/g and stretching out to the outstanding 4.4 mmol/g in the case of 1-methylpiperazin modified MCM-48. The materials are reusable, and their CO2 adsorption capacities are slightly lower in three adsorption/desorption cycles.


2016 ◽  
Vol 120 (22) ◽  
pp. 12068-12074 ◽  
Author(s):  
Alessio Masala ◽  
Francesca Grifasi ◽  
Cesare Atzori ◽  
Jenny G. Vitillo ◽  
Lorenzo Mino ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 483
Author(s):  
Eleonora Conterosito ◽  
Mattia Lopresti ◽  
Luca Palin

New very fast and efficient detectors, installed both on laboratory instruments and synchrotron facilities, allow the monitoring of solid-state reactions from subsecond to minute scales with the production of large amounts of data. Traditional “one-by-one” pattern refinement needs complementary approaches, useful to handle hundreds to thousands of X-ray patterns. Principal-component analysis (PCA) has been applied to these fields in the last few years to speed up analysis with the specific goals of assessing data quality, identifying patterns where a reaction occurs, and extracting the kinetics. PCA is applied to the adsorption/desorption of Xe and CO2 within a Y zeolite. CO2 sequestration is a key issue in relation to climate change, while Xe is a critical raw material, and its purification is an important topic for the industry. At first, results were compared to traditional sequential Rietveld refinement. CO2-Y data were also compared with in situ single crystal data to investigate the different potentialities of PCA in the two cases. Two CO2 adsorption sites were confirmed, while three Xe sites were identified. CO2 showed a more linear adsorption trend with decreasing temperature, while Xe showed a more sigmoidal-like trend. Xe only showed site-dependent behavior in adsorption. Finally, PCA and correlation analysis, applied to analyze the parameters obtained from Rietveld refinement, highlighted finer details: in particular, this approach showed that the Y zeolite framework responded differently to CO2 and Xe adsorption.


Author(s):  
Zezhong John Li ◽  
Simcha Srebnik

With an increasing need to develop carbon capture technologies, research regarding the use of cage-based porous materials has garnered great interest. Typically, the study of gas adsorption in porous organic...


Sign in / Sign up

Export Citation Format

Share Document