scholarly journals Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring

2015 ◽  
Vol 40 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Young-Su Kim ◽  
Jin Hyung Park ◽  
Hwa Youn Cho ◽  
Jae Hyeon Kim ◽  
Heungrok Kwon ◽  
...  
Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus Vertical Axis Wind Turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, Computational Fluid Dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional U-RANS computational model was applied to analyze the wake characteristics on the mid plane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out analyzing the structure of the wake, and correlating the main macro-structures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-21
Author(s):  
Ryota Yasudo ◽  
José G. F. Coutinho ◽  
Ana-Lucia Varbanescu ◽  
Wayne Luk ◽  
Hideharu Amano ◽  
...  

Next-generation high-performance computing platforms will handle extreme data- and compute-intensive problems that are intractable with today’s technology. A promising path in achieving the next leap in high-performance computing is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators such as FPGAs, which have been shown to speed up compute-intensive tasks with reduced power consumption. However, assessing the feasibility of large-scale heterogeneous systems requires fast and accurate performance prediction. This article proposes Performance Estimation for Reconfigurable Kernels and Systems (PERKS), a novel performance estimation framework for reconfigurable dataflow platforms. PERKS makes use of an analytical model with machine and application parameters for predicting the performance of multi-accelerator systems and detecting their bottlenecks. Model calibration is automatic, making the model flexible and usable for different machine configurations and applications, including hypothetical ones. Our experimental results show that PERKS can predict the performance of current workloads on reconfigurable dataflow platforms with an accuracy above 91%. The results also illustrate how the modelling scales to large workloads, and how performance impact of architectural features can be estimated in seconds.


2021 ◽  
pp. 348-356
Author(s):  
Natalia Nikitina ◽  
Maxim Manzyuk ◽  
Črtomir Podlipnik ◽  
Marko Jukić

2020 ◽  
Vol 186 ◽  
pp. 01006
Author(s):  
Daniel Anthony Howard ◽  
Konstantin Filonenko ◽  
Frederik Stjernholm Busk ◽  
Christian Veje

The definition of overall district heating network performance indicators is under-investigated in the literature. This study reviews existing methods of performance estimation and develops a convenient methodology for an array of district heating networks applied to a Danish case study. Performances of the networks with state-of-art pipe transmission coefficients are compared to older traditional pipes using an effective average approach. The reported efficiencies and analysis of contributing factors show, that a single parameter is not sufficient to compare large-scale district heating systems and a multiparametric analysis must be employed. The effective average total heat transmission coefficient is evaluated based on the Technical Evaluation Factor and a multivariate regression is performed on typical sets of network parameters: pipe type, pipe series, pipe age, and operational temperature. The developed methodology is applied to testing an array of geographically independent district heating networks, pointing to possible performance bottlenecks, and discussing potential remedies.


2020 ◽  
Vol 32 ◽  
pp. 03055
Author(s):  
Akshay Nichinte ◽  
Vishwesh Vyawahare ◽  
Dhiraj Magare

The performance of photovoltaic (PV) module in the environment can be improved by considering the seasonal effects. In this paper, the effect of seasonal variations of Amorphous-Silicon/thin film photovoltaic technology in different seasons has been presented for National Institute of Solar Energy (NISE), Gurgaon site in India. It has been observed that, the estimation efficiency and output power of a-Si technology using module temperature is well match to measured efficiency and output power. This study is mainly very important in India because of the each season’s variation effect on different PV technology will be useful for large scale project assessment.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 256
Author(s):  
Alberto Benato ◽  
Francesco De Vanna ◽  
Ennio Gallo ◽  
Anna Stoppato ◽  
Giovanna Cavazzini

The spread of renewable resources, such as wind and solar, is one of the main drivers to move from a fossil-based to a renewable-based power generation system. However, wind and solar production are difficult to predict; hence, to avoid a mismatch between electricity supply and demand, there is a need for energy storage units. To this end, new storage concepts have been proposed, and one of the most promising is to store electricity in the form of heat in a Thermal Energy Storage reservoir. However, in Thermal Energy Storage based systems, the critical component is the storage tank and, in particular, its mathematical model as this plays a crucial role in the storage unit performance estimation. Although the literature presents three modelling approaches, each of them differs in the considered parameters and in the method of modelling the fluid and the solid properties. Therefore, there is a need to clarify the model differences and the parameter influences on plant performance as well as to develop a more complete model. For this purpose, the present work first aim is to compare the models available in the literature to identify their strengths and weaknesses. Then, considering that the models’ comparison showed the importance of adopting temperature-dependent fluid and storage material properties to better predict the system performance, the authors developed a new and more detailed model, named TES-PD, which works with time and space variable fluid and solid properties. In addition, the authors included the tank heat losses and the solid effective thermal conductivity to improve the model accuracy. Based on the comparisons between the TES-PD model and the ones available in the literature, the proposal can better predict the first cycle charging time, as it avoids a 4% underestimation. This model also avoids overestimation of the delivery time, delivered energy, mean generated power and plant round-trip efficiency. Therefore, the results underline that a differential and time-accurate model, like the TES-PD, even if one-dimensional, allows a fast and effective prediction of the performance of both the tank and the storage plant. This is essential information for the preliminary design of innovative large-scale storage units operating with thermal storage.


Sign in / Sign up

Export Citation Format

Share Document