scholarly journals Synthesis, characterization, x-ray diffraction studies and biological activities of iron(III) and cobalt(II) complexes with alanine

2018 ◽  
Vol 6 (2) ◽  
pp. 132
Author(s):  
Shuaibu Musa ◽  
S O. Idris ◽  
A D. Onu

The resulted complexes produced between Fe (III) and Co (II) with biological molecules like amino acids play an important role in human life. They can be used as bioactive compounds as well as in industries. Fe (III) and Co (II) complexes are synthesized with Alanine amino acid. The complexes were characterized by X-ray diffraction, magnetic suscetivility, elemental analysis (AAS), molar conductance, melting point, infrared and uv-visible spectrophotometry analyses. The elemental analyses were used to determine the chelation ratio, 1:3(metal: ligands) for iron (III) Alanine and 1:2 ratio for cobalt (II) Alanine. The molar conductivity of the complexes show that the complexes are not electrolytic in nature. The x-ray data suggest monoclinic crystal system for all the complexes with the exception of Co-alanine, which is hexagonal. The magnetic susceptivility and electronic spectra suggest the complexes are high spin with octahedral geometry.The complexes show enhance activity in comparable to the amino acid.  

2005 ◽  
Vol 60 (3) ◽  
pp. 247-250 ◽  
Author(s):  
Xin Tian ◽  
Roland Fröhlich ◽  
Norbert W. Mitzel

The syntheses of ditbutylaluminium and -gallium iodide via metathesis reactions of the respective chlorides with lithium iodide are reported. The compounds were identified by elemental analyses, multinuclear NMR spectroscopy (1H, 13C, 27Al) and mass spectra (EI). The structures obtained by single crystal X-ray diffraction reveal that the new compound tBu2AlI crystallizes in the monoclinic crystal system, space group P21/n, as a dimer with a planar Al2I2 four-membered ring. The crystal structure of the monoclinic structure of tBu2GaI was redetermined. Its mass spectra reveal the existence of trimers and dimers in addition to the predominant monomeric species in gas phase


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


1998 ◽  
Vol 63 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Miloš Tichý ◽  
Luděk Ridvan ◽  
Miloš Buděšínský ◽  
Jiří Závada ◽  
Jaroslav Podlaha ◽  
...  

The axially chiral bis(α-amino acid)s cis-2 and trans-2 as possible building blocks for polymeric structures of novel type of helicity were prepared. Their configuration has been determined by NMR spectroscopy and, in the case of the trans-isomer, confirmed by single-crystal X-ray diffraction. Analogous pair of stereoisomeric diacids cis-3 and trans-3, devoid of the amino groups, was also prepared and their configuration assigned. The observed differences in the NMR spectra of cis- and trans-isomers of 2 and 3 are discussed from the viewpoint of their different symmetry properties.


Author(s):  
Süheyla Özbey ◽  
Nilgün Karalı ◽  
Aysel Gürsoy

AbstractIn this study 4-(3-coumarinyl)-3-benzyl-4-thi azolin-2-one 4-methylbenzylidenehydrazone 3 was synthesised. An independent proof of the thiazolylhydrazone structure of 3 was achieved by single crystal X-ray diffraction analysis. Elemental analyses and spectral data (IR,


2013 ◽  
Vol 803 ◽  
pp. 80-84
Author(s):  
Yu Qi Liu ◽  
Yong Yang ◽  
Rui Yang ◽  
Xiao Jun Xu

A novel metalorganic coordination polymer, namely [Co3(bpd)5.5(NCS)6(NH3)]n2H2O (1) (bpd=1,4-bis (4-pyridyl)-2,3-diaza-1,3-butadiene), has been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Compound 1 presents 2D[3,4,-connected 3-nodal net with the point symbol (4268210)(4462)(8210). In addition, four identical 2D single nets is interlocked with each other in parallel, thus directly leading to the formation of a polycatenated layer (2D2D).


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


Author(s):  
Haiming Zhou ◽  
Jing Zhang ◽  
Xiaoqing Chen ◽  
Shili Guo ◽  
Huimei Lin ◽  
...  

Background and Objective: Beauvericin (BEA), a cyclic hexadepsipeptide mycotoxin, is a potent inhibitor of the acyl-CoA: cholesterol acyltransferase enzyme 1 (ACAT1) which involved in multiple tumor-correlated pathways. However, the binding mechanisms between BEA and ACAT1 were not elucidated. Methods: BEA was purified from a mangrove entophytic Fusarium sp. KL11. Single-crystal X-ray diffraction was used to determine the structure of BEA. Wound healing assays of BEA against KB cell line and MDA-MB-231 cell line were evaluated. Inhibitory potency of BEA against ACAT1 was determined by ELISA assays. Molecular docking was carried out to illuminate the bonding mechanism between BEA and ACAT1. Results: The structure of BEA was confirmed by X-ray diffraction, indicating a monoclinic crystal system with P21 space group (α = 90°, β = 92.2216(9)o, γ= 90o). BEA displayed migration-inhibitory activities against KB cells and MDA-MB-231 cells in vitro. ELISA assays revealed the protein expression level of ACAT1 in KB cells was significantly decreased after BEA treatment (P <0.05). Molecular docking demonstrated that BEA formed hydrogen bond with His425 and pi-pi staking with Tyr429 in ACAT1. Conclusions: BEA sufficiently inhibited the proliferation and migration of KB cells and MDA-MB-231 cells by downregulating ACAT1 expression. In addition, BEA potentially possessed a strong binding affinity with ACAT1. BEA may serve as a potential lead compound for the development of a new ACAT1-targeted anticancer drug.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012004
Author(s):  
Duha S. Ahmed ◽  
Noor Q. Ali ◽  
Ali A. Taha

Abstract In this paper, we reported the synthesis of NiO NPs and Mg doped-NiO NPs using the facile sol-gel method. Besides, the influence of the variation of Mg dopant on the structural, morphological and optical properties of the prepared Mg-NiO NPs was studied. The synthesized Mg-NiO NPs nanoparticles were characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectrophotometer. The X-ray diffraction confirmed the formation of the cubic structure of Mg doped-NiO NPs after doping with the magnesium. The increase in the crystal size was observed with the increase in the concentration of the Mg dopant element. The FESEM images reveal the formation of nickel oxide through the appearance of spherical clusters, while the hybrids appear as wrinkled surface covered with spherical particles of magnesium. The UV-Vis spectrum showed a shift towards shorter wavelengths with an increase in the concentration of the Mg dopant element due to the quantum confinement effect. The hemolysis activity study showed that NiO NPs had a low hemolysis percentage of 1.47% and increased with increasing concentration. While, increasing of the RBC hemolysis (5.9%) after NiO doped with Mg. The antibacterial activity was studied against S. aureus and P. aeruginosa bacteria, and indicated the highest growth inhibition zones of Mg-doped NiO NPs as compared with NiO NPs against of Staphylococcus aureus and Pseudomonas aeruginosa, respectively.


Author(s):  
Anca Emandi ◽  
Mariana Balasoiu ◽  
Tudor Rosu

1-(2-Benzthyazolyl)-3-methyl-4-azo-(4-nitrophenyl)-Pyrazolyn-5-one (HL) possesses a chelating behavior. Its chelates with a number of trivalent lanthanide ions Pr(III), Sm(III),Gd(III), Ho(III), La(III) of the type Na3[Ln(L)2(OH)4] have been isolated and characterized on the basis of their elemental analyses, IR and visible spectra, magnetic and molar conductance studies, thermal and X-ray analysis and molecular weight determinations. All chelates have a monomeric octa-coordinated stn1cture and square antiprismatic (C2) symmetry.


Sign in / Sign up

Export Citation Format

Share Document