scholarly journals Shadow dispersion of PV Array under variable irradiance for superior power Generation by Magic Square Configuration

2018 ◽  
Vol 7 (1.8) ◽  
pp. 172 ◽  
Author(s):  
G Sreenivasa Reddy ◽  
T Bramhananda Reddy ◽  
M Vijaya Kumar

The PV array generates smaller amount of the power compared with other electrical power generation components. There are many components that are adversely effected the output of PV array in such components, one is partial shading. Due to this, each module in PV array receives different solar irradiations causes different P-V characteristics of its peak values. This paper presents a pioneering method called as Magic Square configuration has been proposed to enhance the generated power of photovoltaic modules by configuring those are under affect of shade. Thus there is no change of electrical arrangement of PV modules in an array but only the objective location in the total cross tied (TCT) array is rearranged according to the magic square arrangement. Proposed paper gives comparison data with the conventional configuration method and hence the performance is calculated. The proposed technique provides a better solution that how shadow effect on the PV  modules has been reduced and how this shadow is distributed, and not only that also gives an idea  about how the inequality losses due to the partial shading is effectively reduced. The power loss of  various configurations of 3X3 and 4X4 array has been compared. The proposed technique is validated through MATLAB/Simulink environment. 

2019 ◽  
Author(s):  
LAHCEN

The main purpose of this paper is to model, simulate, and improve the performance of different 9 × 9 PV array configurations under different Partial Shading Conditions (PSCs) in order to extract the maximum power by defeat the mismatching power losses. Hence, PSCs reduces the performance of Photovoltaic (PV) arrays and increase the Local Maximum Power Points (LMPPs) on output characteristics P-V due to mismatching power losses between the PV panels. For this, Total-CrossTied (TCT) , and proposed Magic Square View (MSV) PV array topologies are considered for the study under Short Narrow shading patterns. PV array configurations enhancements and theirinvestigations are carried out with regard to the comparison of the Global peak of outlet power (GP).The parameters of the PV array configurations are performed in MATLAB/Simulink software.


Author(s):  
Faisal Saeed ◽  
Haider Ali Tauqeer ◽  
Hasan Erteza Gelani ◽  
Muhammad Hassan Yousuf

Partial shading on solar photovoltaic (PV) arrays is a prevalent problem in photovoltaic systems that impair the performance of PV modules and is responsible for reduced power output as compared to that in standard irradiance conditions thereby resulting in the appearance of multiple maximas on panel output power characteristics. These maxims contribute to mismatch power losses among PV modules. The mismatch losses depend on shading characteristics together with different interconnected configuration schemes of PV modules. The research presents a comparative analysis of partial shading effects on a 4 x4 PV array system connected in series(S), parallel (P), serries-parallel (SP),total-cross-tied (TCT),central-cross-tied(CCT),bridge-linked(BL),bridge-linked total cross-tied (BLTCT) ,honey-comb(HC), honey-comb total-cross-tied (HCTCT) and ladder (LD) configurations using MATLAB/Simulink. The PV module SPR-X20-250-BLK was used for modeling and simulation analysis. Each module is comprised of 72 number of PV cells and a combination of 16 PV modules was employed for the contextual analysis. Accurate mathematical modeling for the HCTCT configuration under partial shading conditions (PSCs) is provided for the first time and is verified from the simulation. The different configuration schemes were investigated under short-narrow,short-wide,long-narrow,long-wide, diagonal, entire row distribution, and entire column distribution partial shading condition patterns with mathematical implementation and simulation of passing clouds. The performance of array configurations is compared in terms of maximum power generated ), mismatch power loss (∆), relative power loss ) and the fill factor (FF). It was inferred that on average, TCT configuration yielded maximum power generation under all shading patterns among all PV modules interconnection configurations with minimum mismatch power losses followed by hybrid and conventional PV array configurations respectively.


2022 ◽  
Vol 253 ◽  
pp. 115148
Author(s):  
Rupendra Kumar Pachauri ◽  
Sudhakar Babu Thanikanti ◽  
Jianbo Bai ◽  
Vinod Kumar Yadav ◽  
Belqasem Aljafari ◽  
...  

2015 ◽  
Vol 781 ◽  
pp. 267-271
Author(s):  
Santisouk Phiouthonekham ◽  
Anucha Lekkruasuwan ◽  
Surachai Chaitusaney

The impact of partial shading on photovoltaic (PV) array is discussed in this paper. The partial shading on PV array can significantly decrease the power generation of PV array. This study examines the modeling of PV module which relates with solar irradiation, temperature, and shading pattern. There are different shading patterns on PV array, such as one-string shading, two-strings shading, and much more. The characteristics of current-voltage (I-V) and voltage-power (V-P) curves for each individual the PV array can be different dependent on the multiple MPPs, maximum power points (MPPs). These multiple MPPs are basically lower than the MPP in case of no shading. Therefore, the total generated energy in an interested time period is usually reduced. As a result, this paper proposes the appropriate arrangement of PV modules in a PV array in order to mitigate the impact of partial shading. Finally, the proposed arrangement of PV modules is tested in a testing system. All the obtained results confirms that the proposed arrangement of PV modules is effective and can be applied in practice.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1046
Author(s):  
Anas Al Tarabsheh ◽  
Muhammad Akmal ◽  
Mohammed Ghazal

Photovoltaic (PV) modules comprise bypass diodes to limit hotspot formation. However, they suffer from performance reduction in the presence of partial shading. This paper proposes external circuitry to control the connection type (series/parallel) of the PV cells through a pair of on/off switches resulting in three different operation modes. Mode 1 represents the typical 36 series-connected cells, while mode 2 represents two parallel-connected strings, and mode 3 maximizes the output current where the four strings are connected in parallel. The added values of the approach are that (1) the output current of the PV module can be increased without the need for a buck-boost converter and (2) the partial shading has less impact on the output power than the adoption of bypass diodes. This work shows that simulating three monocrystalline PV modules (120 W, 200 W, and 241 W), consisting of 36, 60, and 72 series-connected cells, lose about 74% when one cell has 80% shading in the absence of bypass diodes. The application of a bypass diode for each pair of strings in the PV module improves this decrease to 61.89%, 40.66%, and 39.47%, respectively. According to our proposed approach, this power loss can be significantly decreased to 19.59%, 50%, and 50.01% for the three PV modules, respectively, representing more than a 42% improvement compared to bypass diodes.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Chayut Tubniyom ◽  
Rongrit Chatthaworn ◽  
Amnart Suksri ◽  
Tanakorn Wongwuttanasatian

Configurations of photovoltaic (PV) modules, such as series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations, always utilize a number of connecting switches. In a simulation, the ideal switch with no loss is used to optimize the reconfiguration method for a solar PV array. However, in practice, the switches are non-ideal, causing losses and resulting in a decrease in the total output power of the PV array. In this work, MATLAB/Simulink (R2016a) was employed to simulate nine PV modules linked in a 3 × 3 array, and they were reconfigured using series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations for both ideal and non-ideal switch cases. It was not surprising that non-ideal switches deteriorated the output power compared with ideal cases. Then, the minimization of losses (ML) configuration was proposed by minimizing the number of switches to give the highest output power. A 5% higher power output was set as the criterion to reconfigure the PV modules when partial shading occurred. The results showed that if 50% or more of the area was partially shaded, reconfiguration was unnecessary. On the other hand, when the shaded area was less than 50%, reconfiguration gave a significant increase in power. Finally, the ML method had different configurations for various shading patterns, and provided better results than those of the TCT method.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Lahcen El Iysaouy ◽  
Mhammed Lahbabi ◽  
Algirdas Baskys ◽  
Abdelmajid Oumnad

Abstract The power generated by the photovoltaic (PV) array is affected by the partial shading, caused by the neighboring object shadows, dirtiness, moving clouds, bird droppings, different orientation angles of PV modules, deposition of dust in modules, and the physical location of the PV module. Therefore, the PV systems exhibit multiple peaks of generated power and do not always track the maximum power point (MPP). Thus, to overcome these problems of multiple peaks, the PV panels are reconfigured using either electrical or physical reconfiguration methods. The main aim of this paper is to investigate the performance of magic square view (MSV) configuration of PV modules under partial shading conditions (PSCs). For validation, three kinds of PSCs patterns are considered and are then compared to the Total Cross Tied (TCT) and Sudoku (SDK) configurations: long and wide, short and narrow, and long and narrow. Overall, the obtained results show that the MSV configuration allows us to increase the power generated by the PV array by 34% and 7% under the three types of shadow studied as compared to the TCT and SDK configurations, respectively. The PV array configurations parameters are performed based on matlab/simulink software. The simulation and performance analysis of PV array configurations is performed with 81 PV modules of BP Solar Poly BP 380 modules.


2019 ◽  
Vol 118 ◽  
pp. 03049
Author(s):  
Yilian Tang ◽  
Ming Li ◽  
Xun Ma

The aim of this study was to investigate the effect of PV modules mounted on top of a greenhouse, on the growth of strawberries and microclimate conditions as well as to estimate the generated energy. In this study, two greenhouses with the same volume were established. One greenhouse was equipped with the opaque photovoltaic (OPV) modules which accounted for 25.9% of the roof area, and the other was equipped with the semi-transparent photovoltaic (STPV) modules which accounted for 20% of the roof area. The maximum annual power generation of OPV and STPV modules was 880 and 388 kWh with 30° tilt angle, respectively, by simulating different tilt angles. The temperature under the OPV and STPV modules was 2.9 and 1.1 °C lower than the unshaded part in the greenhouses, respectively, at noon in clear weather, and had little effect on relative humidity. The photosynthetically active radiation (PAR) under OPV and STPV modules was reduced by 43.5% and 31.7%, respectively, under the PE film greenhouse. The contents of soluble solids in strawberries in OPV and STPV greenhouses were 16.4 and 15.7 mg/g respectively, which were higher than those in unshaded samples. The quality and yield of the strawberry samples under the shade of OPV were better than those of the STPV shade.


Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various typesof shaded patterns. The modeling of solar PV array for various types of topologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


Sign in / Sign up

Export Citation Format

Share Document