scholarly journals Geometrical behavior of laminated graphite/epoxy composite using hypermesh

2018 ◽  
Vol 7 (2.20) ◽  
pp. 214
Author(s):  
Ch Siva RamaKrishna ◽  
KV Subba Rao ◽  
Saineelkamal Arji

The laminated composite material is  made of ply which are specically used in automotive, aerospace and military applications due to less in weight and high strength to weight ratio. The role of structural strength is very important in composites, as the material is weak in inherent strength leads to damage of equipment made with the laminated composite. Hence, an accurate understanding of their structural geometrical behavior for residual stresses is required, such as residual stresses with different aspect ratios. In present work, various aspect ratios of laminated composite and its residual stresses are investigated using finite element analysis. The numerical results showed, on the residual stresses, that the effects the change the residual stresses due change of aspect ratio of laminated Graphite/epoxy composite. 

2016 ◽  
Vol 716 ◽  
pp. 13-21 ◽  
Author(s):  
Vladimir Stefanov Hristov ◽  
Kazunari Yoshida

In recent years, due to its low density and high strength/weight ratio, magnesium alloy wires has been considered for application in many fields, such as welding, electronics, medical field (for production of stents). But for those purposes, we need to acquire wires with high strength and ductility. For that we purpose we proposed alternate drawing method, which is supposed to highly decrease the shearing strain near the surface of the wire after drawing, by changing the direction of the wire drawing with each pass and thus acquiring high ductility wires.We have done research on the cold alternate drawing of magnesium alloy wires, by conducting wire drawing of several magnesium wires and testing their strength, hardness, structure, surface and also finite element analysis, we have proven the increase of ductility at the expense of some strength.In this research we are looking to further improve the quality of the drawn wires by examining the benefits of using diamond dies over tungsten carbine dies. Using the alternate drawing method reduces the strength of the drawn wires and thus lowering their drawing limit. By using diamond dies we are aiming to decrease the drawing stress and further increase the drawing limit of the alternate drawn wires and also improve the quality of the finishing surface of the wires. With this in mind we are aiming to produce a good quality wire with low diameter, high ductility, high strength and fine wire surface.


2003 ◽  
Vol 125 (3) ◽  
pp. 274-276 ◽  
Author(s):  
R. R. de Swardt

During a recent study the residual strain/stress states through the walls of autofrettaged thick-walled high-strength steel cylinders were measured with neutron diffraction, Sachs boring and the compliance methods (Venter et al., 2000, J. Strain Anal. Eng. Des., 35, pp. 459–469). The Sachs boring method was developed prior to the advent of high speed computers. A new method for the data reduction was proposed. In order to verify the proposed procedure, the Sachs boring experimental method was simulated using finite element modeling. A residual stress field was introduced in the finite element method by elasto-plastic finite element analysis. The physical process of material removal by means of boring was simulated by step-by-step removal of elements from the finite element mesh. Both the traditional and newly proposed data reduction methods were used to calculate the residual stresses. The new data reduction method compares favorably with the traditional method.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


Author(s):  
Amir Hussain Idrisi ◽  
Abdel-Hamid Ismail Mourad ◽  
Beckry Abdel-Magid ◽  
Mohammad Mozumder ◽  
Yaser Afifi

Abstract Composite materials are being used in many industrial applications such as automobile, aerospace, marine, oil and gas industries due to their high strength to weight ratio. The long-term effect of sustained loads and environmental factors that include exposure to UV light, temperature, and moisture have been under investigation by many researchers. The major objective of this study is to evaluate the effects of harsh environment (e.g. seawater and high temperature) on the structural properties of E-glass epoxy composite materials. These effects were studied in terms of seawater absorption, permeation of salt and contaminants, chemical and physical bonds at the interface and degradation in mechanical properties. Samples were immersed in seawater at room temperature (23°C), 65°C and 90°C for the duration of 6 months. Results show that seawater absorption increased with immersion time at 23°C and 65°C, whereas the weight of the specimens decreased at 90°C. The moisture causes swelling at 23°C and 65°C and breakdown of chemical bonds between fiber and matrix at 90°C. It is observed that high temperature accelerates the degradation of the E-glass epoxy composite. At 90°C, the tensile strength of E-glass epoxy sharply decreased by 72.92% but no significant change was observed in modulus of elasticity of the composite.


2019 ◽  
Vol 795 ◽  
pp. 172-179
Author(s):  
Yan Qi Hu ◽  
Wieslaw K. Binienda

Braided composites have been widely used in aerospace and automotive structures due to their light weight and high strength. Unlike metal or laminated composite material, the complex braided structure brings a lot of challenges when conducting numerical simulation. In this paper, a finite element analysis based meso-mechanical modeling for the two dimensional triaxially braided composite was developed. This mesoscale modeling method is capable of considering the detailed braiding geometry and architecture as well as the mechanical behavior of fiber tows, matrix and the fiber tow interface. Furthermore, a multiscale model combined both macroscale and mesoscale approaches and it is realized within LS-DYNA environment through Interface_components and Interface_linking. This combined multiscale modeling approach enables the full advantage of both the macroscale and mesoscale approaches, which can describe the details of local deformation and the global overall response features of the entire structure with the minimum computational expense. The evaluation and verification of the mesoscale approach and combined multiscale modeling method is through a notched coupon tensile tests conducted by Kohlman in both axial and transverse direction. The multiscale modeling method captures the response feature accurately so it has the ability to analyze large scale structures.


Fibers ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 13 ◽  
Author(s):  
Mohamad Fotouhi ◽  
Cristiano Fragassa ◽  
Sakineh Fotouhi ◽  
Hamed Saghafi ◽  
Giangiacomo Minak

The use of high strength-to-weight ratio-laminated fiber-reinforced composites is emerging in engineering sectors such as aerospace, marine and automotive to improve productivity. Nevertheless, delamination between the layers is a limiting factor for the wider application of laminated composites, as it reduces the stiffness and strengths of the structure. Previous studies have proven that ply interface nanofibrous fiber reinforcement has an effective influence on delamination resistance of laminated composite materials. This paper aims to investigate the effect of nanofiber ply interface reinforcement on mode I properties and failure responses when being subjected to static and fatigue loadings. For this purpose, virgin and nanomodified woven laminates were subjected to Double Cantilever Beam (DCB) experiments. Static and fatigue tests were performed in accordance with standards and the Acoustic Emissions (AE) were acquired during these tests. The results showed not only a 130% increase of delamination toughness for nanomodified specimens in the case of static loads, but also a relevant crack growth resistance in the case of fatigue loads. In addition, the AE permitted to relate these improvements to the different failure mechanisms occurring.


e-Polymers ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 83-88
Author(s):  
Yi-Chang Lee ◽  
Ho Chang ◽  
Ching-Long Wei ◽  
Rahnfong Lee ◽  
Hua-Yi Hsu ◽  
...  

AbstractThe molecular chains of a highly oriented polymer lie in the same direction. A highly oriented polymer is an engineering material with a high strength-to-weight ratio and favorable mechanical properties. Such an orthotropic material has biaxially arranged molecular chains that resist stress in the tensile direction, giving it a high commercial value. In this investigation, finite element analysis (FEA) was utilized to elucidate the deformation and failure of a highly oriented polymer. Based on the principles of material mechanics and using the FEA software, Abaqus, a solid model of an I-beam was constructed, and the lengths of this beam were set based on their heights. Three-point bending tests were performed to simulate the properties of the orthotropic highly oriented polymer, yielding results that reveal both tension failure and shear failure. The aspect ratio that most favored the manufacture of an I-beam from highly oriented polymers was obtained; based on this ratio, a die drawing mold can be developed in the future.


2014 ◽  
Vol 777 ◽  
pp. 171-175 ◽  
Author(s):  
Shao Pin Song ◽  
Anna M. Paradowska ◽  
Ping Sha Dong

Titanium and its alloys have increasingly become a material of choice for applications in high-performance structures due to their superior corrosion resistance and high strength-to-weight ratio. However, in contrast to conventional steel alloys, there exist little design and manufacturing experience in the heavy fabrication industry with large welded structures made of titanium materials. In addressing the above concern, the University of New Orleans funded by Office of Naval Research (ONR) initiated program on investigation of manufacturability and performance of a titanium mid-ship section. The uniqueness of this program is its focus upon a representative full-size mid-ship section upon which relevant scientific and technological challenges are simulated and experimentally validated. This paper reports the measurements of residual stresses using neutron diffraction in titanium T-joints. The residual stresses were measured using Engin-X at ISIS (UK) and the Kowari Strain Scanner at ANSTO (Australia). This experimental research was used to validate our in house predictions and significantly improved the knowledge and understanding of the welding process of titanium alloys.


DYNA ◽  
2019 ◽  
Vol 86 (208) ◽  
pp. 153-161
Author(s):  
Carlos A. Meza ◽  
Ediguer E. Franco ◽  
Joao L. Ealo

Laminated composites are widely used in applications when a high strength-to-weight ratio is required. Aeronautic, naval and automotive industries use these materials to reduce the weight of the vehicles and, consequently, fuel consumption. However, the fiber-reinforced laminated materials are anisotropic and the elastic properties can vary widely due to non-standardized manufacturing processes. The elastic characterization using mechanical tests is not easy, destructive and, in most cases, not all the elastic constants can be obtained. Therefore, alternative techniques are required to assure the quality of the mechanical parts and the evaluation of new materials. In this work, the implementation of the ultrasonic through-transmission technique and the characterization of some engineering materials is reported. Isotropic materials and laminated composites of carbon fiber and glass fiber in a polymer matrix were characterized by ultrasound and mechanical tests. An improved methodology for the transit time delay calculation is reported.


Author(s):  
Patrick S. Chang ◽  
David W. Rosen

Mesoscale truss structures are cellular structures that have support elements on the order of centimeters. These structures are engineered for high performance and have applications in industries where a high strength-to-weight ratio is desired. However, design of mesoscale truss structures currently requires some form of topological optimization that slows the design process. In previous research, a new Size, Matching and Scaling method was presented that eliminated the need for topological optimization by using a solid-body finite element analysis combined with a library of lattice configurations to generate topologies. When compared to topological optimization, results were favorable: design times were significantly reduced and performance results were comparable. In this paper, we present a modified Size Matching and Scaling design method that addresses key issues in the original method. Firstly, we outline an improve methodology. Secondly, we expand the library of configurations in order to improve lattice performance. Finally, we test the updated method and library against design examples.


Sign in / Sign up

Export Citation Format

Share Document