scholarly journals Heat loss analysis in a radiating slab of variable thermal conductivity

2018 ◽  
Vol 7 (2.23) ◽  
pp. 228 ◽  
Author(s):  
Ramoshweu S. Lebelo ◽  
Kholeka C. Moloi

This article investigates the transfer of heat in a stockpile of reactive materials, that is assumed to lose heat to the environment by radiation. The study is modeled in a rectangular slab whose materials are of variable thermal conductivity. The stockpile’s reactive material in this context is one that readily reacts with the oxygen trapped within the stockpile due to exothermic chemical reaction. The study of the combustion process in this case is conducted theoretically by using the Mathematical approach. The differential equation governing the problem is tackled numerically by applying the Runge-Kutta Fehlberg (RKF45) method coupled with the Shooting technique. To investigate the heat transfer phenomena, some kinetic parameters embedded in the governing differential equation, are varied to observe the behavior of the temperature profiles during the combustion process. The results obtained from the temperature profiles, are depicted graphically and discussed accordingly. It was discovered that kinetic phenomena such as the reaction rate parameter, accelerates the exothermic chemical reaction. However, the radiation parameter decelerates the exothermic chemical reaction by lowering the temperature profiles.  

2020 ◽  
Vol 987 ◽  
pp. 137-141
Author(s):  
Ramoshweu Solomon Lebelo

An investigation of heat transfers in a combustible stockpile whose materials are of variable thermal conductivity is conducted in this article. The stockpile is modeled in rectangular slap and a two-step exothermic chemical reaction responsible for the combustion process is assumed. The reactive slab is also assumed to lose heat to the ambient by radiation. The Runge-Kutta Fehlberg (RKF45) method coupled with the Shooting technique is applied to tackle numerically the nonlinear ordinary differential equation (ODE) governing the problem. The process of heat transfer during combustion is made easy to understand by investigating effects of selected thermo-physical parameters on the system’s temperature. The results show that some thermo-physical parameters accelerate the exothermic chemical reaction and therefore raise the temperature levels, and that others help to reduce heat release rate to lower the temperature profiles. The graphs for the results are plotted and discussed accordingly.


2018 ◽  
Vol 7 (3.19) ◽  
pp. 27
Author(s):  
RS Lebelo ◽  
KS Moloi ◽  
CC Chitumwa ◽  
SO Adesanya

In this article, the impact of radiative heat loss in a stockpile of combustible material is investigated. The heat loss is attributed to the exothermic chemical reaction when the carbon containing material of the stockpile reacts automatically with the oxygen trapped within the stockpile. The study is modelled in a rectangular slab of thermal conductivity that varies with the temperature and loses heat to the surrounding environment by radiation. The differential equations governing the problem are solved numerically using the Runge-Kutta-Fehlberg (RKF) method coupled with the Shooting technique. The effect of each embedded kinetic parameter on the temperature, oxygen (O2) depletion and carbon dioxide (CO2) emission, is analyzed and the results are graphically expressed and discussed accordingly. The results show that the kinetic parameters which enhance the exothermic chemical reaction correspondingly increase the temperature and the CO2 emission during the combustion process, and in turn, these parameters also increase the depletion of O2.  


2019 ◽  
Vol 392 ◽  
pp. 178-188
Author(s):  
Ramoshweu Solomon Lebelo

This article investigates the transfer of heat with reactant (oxygen) consumption in a stockpile of reactive material. A reactive material is any carbon or hydrocarbon containing component in a stockpile that readily reacts with the oxygen due to exothermic chemical reaction, where self-ignition may take place if heat generation rate during the combustion process within the stockpile, may exceed the rate of heat release to the surrounding environment. The study is modeled in a long cylindrical pipe whose material thermal conductivity varies with the temperature at a given time. The heat and mass transfer partial differential equations governing the problem were solved numerically using the finite difference method (FDM). Kinetic parameters embedded within the reaction system were analyzed to understand their effects on the temperature and the reactant consumption process. The results shew that the parameters that influence the increase in temperature, increase also the consumption rate of the reactant.


2021 ◽  
Vol 872 ◽  
pp. 15-19
Author(s):  
Ramoshweu Solomon Lebelo ◽  
Kholeka Constance Moloi

In this article, analysis of heat transfer in a stockpile of reactive materials modelled in a rectangular slab is carried out. A two-step exothermic chemical reaction is assumed and the heat loss to the surrounding environment is by radiation. The ordinary differential equation (ODE) governing the problem is tackled numerically by Runge-Kutta Fehlberg (RKF45) method coupled with Shooting technique. The heat transfer analysis is simplified by investigation some kinetic parameters’ effects on the temperature of the combusting system. It was found out that some kinetic parameters raise the levels of the temperature by encouraging the exothermic chemical reaction, whereas some, reduce the levels of the temperature to slow down the heat transfer rate. The results are depicted graphically and discussed accordingly.


2021 ◽  
Vol 408 ◽  
pp. 99-107
Author(s):  
Ramoshweu Solomon Lebelo ◽  
Radley Kebarapetse Mahlobo ◽  
Samuel Olumide Adesanya

Thermal stability in a stockpile of reactive materials is analyzed in this article. The combustion process is modelled in a long cylindrical pipe that is assumed to lose heat to the surrounding environment by convection and radiation. The study of effects of different kinetic parameters embedded on the governing differential equation, makes it easier to investigate the complicated combustion process. The combustion process results with nonlinear molecular interactions and as a result it is not easy to solve the differential equation exactly, and therefore the numerical approach by using the Finite Difference Method (FDM) is applied. The numerical solutions are depicted graphically for each parameter’s effect on the temperature of the system. In general, the results indicate that kinetic parameters like the reaction rate promote the exothermic chemical reaction process by increasing the temperature profiles, whilst kinetic parameters such as the order of the reaction show the tendency to retard the combustion process by lowering the temperature of the system.


Sign in / Sign up

Export Citation Format

Share Document