scholarly journals Application of Gray Relation Analysis for Multi-Response Optimization of Plasma Heat Assisted Turning Performance

2018 ◽  
Vol 7 (2.32) ◽  
pp. 143
Author(s):  
Thella Babu Rao ◽  
Venu Pilli ◽  
Nallamotu Revanth Sai Venkat ◽  
Nagandla Pavan ◽  
Thalari Shiva Ram

This paper presents optimization of plasma heat assisted turning process for machining hardened EN24 die steel (53HRC) by using gray relational analysis. Flank wear and surface roughness (Ra) are experimentally measured as the process performance characteristics under varying conditions of preheating temperature, cutting speed and cutting length. The plasma heating approach was implemented to preheat the workpiece. The machining experiments were conducted according to the L16 design of experiments. Since the chosen machining performance indicators are found with confliction for the chosen process variables, the problem is treated as multi-response optimization problem to minimize the tool wear and surface roughness simultaneously. Therefore, the problem was solved by implementing the gray relational analysis and the derived optimal machining conditions were analysed and reported.  

Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2019 ◽  
Vol 27 (05) ◽  
pp. 1950177 ◽  
Author(s):  
ENGIN NAS ◽  
NURSEL ALTAN ÖZBEK

This paper addresses an approach based on the Taguchi method with gray relational analysis for optimizing the turning parameters of hardened DIN 1.2344 hot work tool steel (54 HRC) with multiple performance characteristics. A gray relational grade obtained from the gray relational analysis was used for the performance characteristic in the Taguchi method L[Formula: see text] (2[Formula: see text]. The optimal turning parameters for surface roughness and tool wear were determined using the parameter design proposed by the Taguchi method. Dry turning tests were carried out using cryogenically treated and untreated uncoated carbide cutting tools. The cutting tool (Untreated and Deep Cryogenic Treated), cutting speed (200, 250 and 300[Formula: see text]m/min) and feed rate (0.09, 0.12 and 0.15[Formula: see text]mm/rev) were selected as experiment parameters. The analysis results revealed that the feed rate (72.84%) was the dominant factor affecting surface roughness and the cutting speed (93.93%) was the dominant factor affecting flank wear. The optimum turning parameters for the lowest Ra values were A2B1C2 and for the lowest Vb values were A1B3C2. According to the results of gray relational analysis, the optimum parameters for minimum average surface roughness and minimum flank wear were A1B2C2.


2016 ◽  
Vol 836 ◽  
pp. 179-184 ◽  
Author(s):  
Am Mufarrih ◽  
Bobby Oedy Pramoedyo Soepangkat ◽  
Iwan Krisnanto

A research was conducted for the optimization in the drilling process of KFRP stacked, with multiple performance characteristics based on the orthogonal array with Taguchi-grey-fuzzy method. The experimental study was conducted under varying the drilling process parameters (feeding speed (mm/min) and cutting speed (m/min)) and tool geometries (point geometry and point angle (degree)). The optimized multiple performances characteristics were thrust force, torque and surface roughness. The quality characteristics of thrust force, torque and surface roughness were smaller-is-better. The experimental design used L18 orthogonal array with two replications. Experimental results have shown that machining performance in the drilling process can be improved effectively through this method.


Author(s):  
Gürcan Samtaş ◽  
Berat Serhat Bektaş

Abstract The aluminum 6061 alloy is commonly employed in the automotive industry in the manufacture of rims, panels and even the chasses of vehicles and has excellent machinability. In this study, the surface of the cryogenically processed aluminum 6061-T651 alloy was milled using both untreated and cryogenically treated TiN-TiCN-Al2O3-coated cutting inserts. The Taguchi L18 orthogonal array was chosen as the experimental design. As the cutting parameters in the experiments, two different cutting inserts (untreated and cryogenically treated, TiN-TiCN-Al2O3-coated), three different cutting speeds (250, 350 and 450 m/min) and three different feed rates (0.15, 0.30 and 0.45 mm/rev) were used. After each experiment, the surface roughness and wear values of the cutting inserts were measured, the latter after repeating the experiment five times. Wear and roughness values were optimized using the Taguchi method. Additionally, Gray Relational Analysis (GRA) was used for the combined optimization of wear and roughness values. The optimized findings determined using Taguchi optimization for minimum surface roughness were the cryogenically treated cutting insert, 250 m/min cutting speed and 0.45 mm/rev feed rate. The optimized findings for wear were the cryogenically treated cutting insert, 350 m/min cutting speed and 0.30 mm/rev feed rate. In the optimization with GRA, the common optimum parameters for surface roughness and wear were the cryogenically treated cutting insert, 250 m/min cutting speed and 0.15 mm/rev feed rate. According to the Taguchi and GRA results, the cryogenically treated cutting inserts performed the best in terms of minimum wear and surface roughness. The Gray-based Taguchi methodology proposed in this study was found to be effective in solving the decision-making problem in multi-specific results as wear and surface roughness.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3418 ◽  
Author(s):  
Khanna ◽  
Airao ◽  
Gupta ◽  
Song ◽  
Liu ◽  
...  

These days, power consumption and energy related issues are very hot topics of research especially for machine tooling process industries because of the strict environmental regulations and policies. Hence, the present paper discusses the application of such an advanced machining process i.e., ultrasonic assisted turning (UAT) process with the collaboration of nature inspired algorithms to determine the ideal solution. The cutting speed, feed rate, depth of cut and frequency of cutting tool were considered as input variables and the machining performance of Nimonic-90 alloy in terms of surface roughness and power consumption has been investigated. Then, the experimentation was conducted as per the Taguchi L9 orthogonal array and the mono as well as bi-objective optimizations were performed with standard particle swarm and hybrid particle swarm with simplex methods (PSO-SM). Further, the statistical analysis was performed with well-known analysis of variance (ANOVA) test. After that, the regression equation along with selected boundary conditions was used for creation of fitness function in the subjected algorithms. The results showed that the UAT process was more preferable for the Nimconic-90 alloy as compared with conventional turning process. In addition, the hybrid PSO-SM gave the best results for obtaining the minimized values of selected responses.


2011 ◽  
Vol 148-149 ◽  
pp. 483-486
Author(s):  
Chun Yan Huang ◽  
Yan Ling Li

Because of the characteristic of the gray relation analysis and the advantage of the alpha-trimmed mean filter, an efficient technique for mixed noise removal in images was proposed. This algorithm can adjust the filter coefficients adaptively according to various pieces of the image features. Experiment results show that the proposed algorithm which greatly improved efficiently, it not only can remove mixed noise in image, but also can keep the details of the image.


Author(s):  
P. Lakshmikanthan ◽  
B. Prabu

This study investigates the optimization of CNC turning operation parameters for Al6061 nickel coated graphite (NCG) metal matrix composite using the Taguchi based grey relational analysis method. The turning operations are carried out with carbide cutting tool inserts. According to the Taguchi quality concept, 3-level orthogonal array was chosen for the experiments. The experiments are conducted at three different cutting speeds (125, 175, 225m/min) with feed rates (0.1, 0.15, 0.2mm/rev) and depth of cut (0.5, 1, 1.5mm) and different % of reinforcement (2.5%, 5%, 7.5%), signal to noise ratio and the analysis of variance are used to optimize cutting parameters. The effects of cutting speed, feed rate and depth of cut on surface roughness and MRR are analyzed. Mathematical models are developed by using the response surface method to formulate the cutting parameters experimental results shown that machining performance can be improved effectively by using this approach, the analysis of variance (ANOVA) is applied to identify the most significant factor for the turning operations according to the weighted sum grade of the GRG. The predict responses shows the models have more than 95% of confident level of R2 value, from the obtained confirmation experiment result, it is observed, there is a good agreement between the estimated value and the experimental value of the grey relational grade. This experimental study reveals that the grey-Taguchi and RSM can be applied successfully for multi response characteristic performances.


2011 ◽  
Vol 121-126 ◽  
pp. 564-567
Author(s):  
Bao Ji Ma ◽  
Yu Quan Zhu ◽  
Xiao Li Jin

The machining characteristics of SiC/Al composite using wire electro discharge machining (WEDM) were investigated in this study. Material cutting speed and surface roughness value were adopted to evaluate the machinability. Peak current, pulse on time, pulse duration and working voltage were selected as the input variables to investigate the machining performance. Effects of input variables on the cutting speed and surface roughness were experimentally tested. Peak current, pulse on time and working voltage were confirmed to have positive effects on cutting speed and surface roughness value. Whereas the cutting speed and surface roughness value decrease with the increase of pulse duration.


2018 ◽  
Vol 4 (4) ◽  
pp. 146-156 ◽  
Author(s):  
Guo-Qiang Wang ◽  
Song-Tao Hu ◽  
Guo-Feng Zeng ◽  
Feng Ye ◽  
Wen-Li Zu

Background: Shanghai Maglev Demonstration Line is the only commercial high-speed maglev train line in the world, which has multiple functions such as transportation, exhibition, tourism and sightseeing. Besides, Shanghai Maglev Demonstration Line has been in operation for 15 years, and has been operating safely and punctually. Maglev protected area are located within 30 meters of the left and right sides of the Shanghai Maglev Demonstration Line and unrelated persons are not allowed to enter the area. When there were external construction invading the protected area, it is neccessary to do the comprehensive technical monitoring and protection. Without similar project to refer to, Metro Line 13 traversing Shanghai Maglev Line was a big challenge. Therefore, effective measures should be taken to do the comprehensive technical monitoring. Finding the relation between the maglev deformation and shield construction parameters was an important part of the monitoring. Aim: This thesis aimed at finding the relation between the maglev deformation and shield construction parameters and controlling the maglev deformation in the crossing of Metro Line 13, thus guiding the shield construction. Methods: This thesis calculated the gray relation between the maglev deformation and shield construction parameters from the cause of deformation of the maglev by the gray relation analysis. Results: The construction parameters optimization and the sensitivity control are carried out. Meanwhile, combined with the measured results of deformation monitoring, the multi means parallel monitoring data are analyzed synthetically and the data are checked, and the construction parameters are adjusted reasonably to make the pier column deformation in the controllable permissible range, having ensured the safe operation of the maglev. Conclusion: The calculation results has provided a reference for realizing active control on the influence of shield construction on the maglev and has remedied the defect that could only use deformation monitoring but could not control the deformation actively in the past work. The gray relational analysis has a certain effect on controlling the influence of shield construction on surrounding structures and has certain reference significance for subsequent similar projects.


Sign in / Sign up

Export Citation Format

Share Document