scholarly journals Trend analysis of university placement by using machine learning algorithms

2018 ◽  
Vol 7 (2.4) ◽  
pp. 178
Author(s):  
Chandrasekhar Kumbhar ◽  
Dr S. S. Sridhar

Machine learning is a method of data analysis that automates analytical model building. These models help you to make a trend analysis of university placements data, to predict a placement rate for the students of an upcoming year which will help the university to analyze the performance during placements. Many students look at universities as a means of investment which can help them make a great future by getting placed in good companies and which will relieve their stress and unease from their lives before graduating from the university. The trend will also help in giving the companies reasons as to why they should visit university again and again. Some attributes play the very important role while analyzing the student for e.g. Student’s name, Department, Company, Location and Annual package. So, classification can help you to classify those data and clustering helps to make the clusters department wise. In this paper we have used neural networks to predict the upcoming student placement and got 77% of accuracy while testing were iteration are 1000. Through extensive trend analysis of varies complex data collected from different sources, we can demonstrate that our analysis can provide a good pragmatic solution for future placement of students. 

Author(s):  
Son Nguyen ◽  
Anthony Park

This chapter compares the performances of multiple Big Data techniques applied for time series forecasting and traditional time series models on three Big Data sets. The traditional time series models, Autoregressive Integrated Moving Average (ARIMA), and exponential smoothing models are used as the baseline models against Big Data analysis methods in the machine learning. These Big Data techniques include regression trees, Support Vector Machines (SVM), Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN), and long short-term memory neural networks (LSTM). Across three time series data sets used (unemployment rate, bike rentals, and transportation), this study finds that LSTM neural networks performed the best. In conclusion, this study points out that Big Data machine learning algorithms applied in time series can outperform traditional time series models. The computations in this work are done by Python, one of the most popular open-sourced platforms for data science and Big Data analysis.


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studiedand provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper aims to analyse some of the different machine learning algorithms and methods which can be applied to big data analysis, as well as the opportunities provided by the application of big data analytics in various decision making domains.


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper aims to analyse some of the different machine learning algorithms and methods which can be applied to big data analysis, as well as the opportunities provided by the application of big data analytics in various decision making domains.


Author(s):  
А.И. Паршин ◽  
М.Н. Аралов ◽  
В.Ф. Барабанов ◽  
Н.И. Гребенникова

Задача распознавания изображений - одна из самых сложных в машинном обучении, требующая от исследователя как глубоких знаний, так и больших временных и вычислительных ресурсов. В случае использования нелинейных и сложных данных применяются различные архитектуры глубоких нейронных сетей, но при этом сложным вопросом остается проблема выбора нейронной сети. Основными архитектурами, используемыми повсеместно, являются свёрточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), глубокие нейронные сети (DNN). На основе рекуррентных нейронных сетей (RNN) были разработаны сети с долгой краткосрочной памятью (LSTM) и сети с управляемыми реккурентными блоками (GRU). Каждая архитектура нейронной сети имеет свою структуру, свои настраиваемые и обучаемые параметры, обладает своими достоинствами и недостатками. Комбинируя различные виды нейронных сетей, можно существенно улучшить качество предсказания в различных задачах машинного обучения. Учитывая, что выбор оптимальной архитектуры сети и ее параметров является крайне трудной задачей, рассматривается один из методов построения архитектуры нейронных сетей на основе комбинации свёрточных, рекуррентных и глубоких нейронных сетей. Показано, что такие архитектуры превосходят классические алгоритмы машинного обучения The image recognition task is one of the most difficult in machine learning, requiring both deep knowledge and large time and computational resources from the researcher. In the case of using nonlinear and complex data, various architectures of deep neural networks are used but the problem of choosing a neural network remains a difficult issue. The main architectures used everywhere are convolutional neural networks (CNN), recurrent neural networks (RNN), deep neural networks (DNN). Based on recurrent neural networks (RNNs), Long Short Term Memory Networks (LSTMs) and Controlled Recurrent Unit Networks (GRUs) were developed. Each neural network architecture has its own structure, customizable and trainable parameters, and advantages and disadvantages. By combining different types of neural networks, you can significantly improve the quality of prediction in various machine learning problems. Considering that the choice of the optimal network architecture and its parameters is an extremely difficult task, one of the methods for constructing the architecture of neural networks based on a combination of convolutional, recurrent and deep neural networks is considered. We showed that such architectures are superior to classical machine learning algorithms


2020 ◽  
Vol 13 (5) ◽  
pp. 1020-1030
Author(s):  
Pradeep S. ◽  
Jagadish S. Kallimani

Background: With the advent of data analysis and machine learning, there is a growing impetus of analyzing and generating models on historic data. The data comes in numerous forms and shapes with an abundance of challenges. The most sorted form of data for analysis is the numerical data. With the plethora of algorithms and tools it is quite manageable to deal with such data. Another form of data is of categorical nature, which is subdivided into, ordinal (order wise) and nominal (number wise). This data can be broadly classified as Sequential and Non-Sequential. Sequential data analysis is easier to preprocess using algorithms. Objective: The challenge of applying machine learning algorithms on categorical data of nonsequential nature is dealt in this paper. Methods: Upon implementing several data analysis algorithms on such data, we end up getting a biased result, which makes it impossible to generate a reliable predictive model. In this paper, we will address this problem by walking through a handful of techniques which during our research helped us in dealing with a large categorical data of non-sequential nature. In subsequent sections, we will discuss the possible implementable solutions and shortfalls of these techniques. Results: The methods are applied to sample datasets available in public domain and the results with respect to accuracy of classification are satisfactory. Conclusion: The best pre-processing technique we observed in our research is one hot encoding, which facilitates breaking down the categorical features into binary and feeding it into an Algorithm to predict the outcome. The example that we took is not abstract but it is a real – time production services dataset, which had many complex variations of categorical features. Our Future work includes creating a robust model on such data and deploying it into industry standard applications.


2021 ◽  
pp. 1-15
Author(s):  
O. Basturk ◽  
C. Cetek

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1241
Author(s):  
Véronique Gomes ◽  
Marco S. Reis ◽  
Francisco Rovira-Más ◽  
Ana Mendes-Ferreira ◽  
Pedro Melo-Pinto

The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods.


2020 ◽  
pp. 1-11
Author(s):  
Tang Yan ◽  
Li Pengfei

In marketing, problems such as the increase in customer data, the increase in the difficulty of data extraction and access, the lack of reliability and accuracy of data analysis, the slow efficiency of data processing, and the inability to effectively transform massive amounts of data into valuable information have become increasingly prominent. In order to study the effect of customer response, based on machine learning algorithms, this paper constructs a marketing customer response scoring model based on machine learning data analysis. In the context of supplier customer relationship management, this article analyzes the supplier’s precision marketing status and existing problems and uses its own development and management characteristics to improve marketing strategies. Moreover, this article uses a combination of database and statistical modeling and analysis to try to establish a customer response scoring model suitable for supplier precision marketing. In addition, this article conducts research and analysis with examples. From the research results, it can be seen that the performance of the model constructed in this article is good.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document