scholarly journals Design of UWB Antenna with WLAN & X-Band Notch for Wireless Communication

2018 ◽  
Vol 7 (2.7) ◽  
pp. 484
Author(s):  
K V.Prashanth ◽  
A Tejasri ◽  
K Sandeep ◽  
U Sateesh Kumar ◽  
G Swarupa

In this proposition, a traditional UWB antenna with twofold indent channels was intended for a few remote applications. The exhibited antenna is outlined having estimations of 30 × 35 × 1.6 mm3 with a fix of rectangular staircase design. The dismissal bands are WLAN at 5 GHz (5.1 - 5.8 GHz) and the satellite X-band from space to earth (7.25 - 7.75 GHz). The patch with a step design with a modified π-formed opening gets the ultra-wide band. The UWB scope of 3.1 - 10.6 GHz affirmed by FCC can possibly cause interferences in the various wireless systems applications.. With a specific end goal to lessen these interferences, we settled on the band indent. In this proposed outline, the WLAN has scores setting a U-molded opening in the patch and the X-band has indents with a reversed T-shape in the ground plane.   

In this article, we have presented various techniques that are used for improving different parameters related to UWB antenna. In this Paper, we planned for MIMO antennas in contemporary wireless communication which enhances the bandwidth and gives compact antennas. The antenna band we notched is of planned MIMO which offers an bandwidth with the operational band-notched. The bandwidth capacity of the antenna is from 2.93-20 gigahertz with sharp rejection at WLAN-band with isolation of not exactly - 22 dB is accomplished for the whole band, by utilizing a simple modified shaped structure in the bottom plane, port isolation and transmission capacity are improved. The diversity execution performance is likewise contemplated and whole outcomes shows it’s a potential point of using MIMO based diversity antenna for ultra wide band applications which is demonstrate in this paper. The parameters to assess the performance of the MIMO are explained, the whole examination completed in different sections has been outlined


2021 ◽  
Author(s):  
Srikanth Itapu

Abstract A Co-Planar Waveguide fed circular ultra-wide band antenna with modified ground-plane and feedline is designed on a FR4 (ϵr=4.3) substrate of thickness 0.01λ0. The proposed antenna exhibits an overall impedance bandwidth ranging from 2.99 GHz to 18.0 GHz and beyond (with S11< -10 dB). Design parameters have been optimized to achieve the UWB bandwidth. The measured radiation patterns of this antenna are omnidirectional in H- plane and bidirectional in E-plane. An extended impedance bandwidth is achieved as a result of modified feed-line. The proposed antenna can be used for medical imaging and urban IoT applications.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 507
Author(s):  
K V.Prashanth ◽  
N Sai Venkatesh ◽  
B Umamaheswari ◽  
M Mukesh ◽  
G Praneeth ◽  
...  

A Compact dual slot ultra-wide band (UWB) Antenna for WLAN and X-Band applications is proposed. The projected antenna is designed for the planar ultra-wide band (UWB) antenna and ultra-wide band (UWB) with two band dismissals. The proposed antenna overall size is 30x40x1.6. The antenna comprises of Rectangular patch imprinted on the Flame Resistant (FR4) substrate with 50Ω input impedance. FR-4 is a composite material made out of fiberglass fabric woven with an epoxy pitch cover that is fire safe (self-dousing). "FR" implies fire resistant, and means that the material meets the standard. This patch consists of dual slot one for WLAN and one for X-band Satellite Communication System. The antenna intended with return loss (RL) >= 10db and frequency ranges between 3.1 to 10.6 GHz with VSWR<2. The antenna works for the applications of wireless local area network (WLAN) system (5.15 – 5.825 GHz), X-band downlink (7.25 - 7.75). The ultra-wide band frequency range for these wireless systems causes interference. To reduce the interference, band notching is done. The WLAN and X-Band satellite communication system bands are forbidden by inserting slots in the patch. The proposed antenna is having high gain at the pass bands while a sharp drop at the forbidden bands.  


Author(s):  
Anwar Sabah ◽  
Malik Jasim Frhan

<span>A printed monopole patch Ultra Wide Band (UWB) antenna for use in UWB application is proposed in this paper. The proposed antenna consists of a patch with appropriate dimensions on one side of a dielectric substrate, and a partial ground plane on the other side of the substrate. The techniques that used to enhance the bandwidth are the partial ground plane, feed point position and adjusted feed gap. The substrate that is used in the proposed antenna is Fr4 epoxy, the optimum dimensions of the antenna are 40mm×28mm×1.5mm this antenna designed by HFSS program. The band achieved by the proposed antenna is from 3.6GHz to 15GHz. This antenna is fabricated in the ministry of science and technology Baghdad-Iraq and a good agreement between simulation and measured S11 is achieved. </span>


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3330 ◽  
Author(s):  
MuhibUr Rahman ◽  
Mahdi NaghshvarianJahromi ◽  
Seyed Sajad Mirjavadi ◽  
Abdel Magid Hamouda

This paper presents a novel resonator that can switch and create three important behaviors within the same antenna using miniaturized capacitors. The resonator was integrated into conventional Ultra-Wide Band (UWB) antenna to achieve UWB and Single/Dual continuously tunable-notch behaviors. The Single/Dual notched was continuously tuned to our desired frequency band by changing the value of the capacitors. The antenna designed and fabricated to validate these behaviors had a compact size of 24 × 30.5 mm2, including the ground plane. The radiation patterns were very clean due to the placement of the proposed resonator in the special ground plane. Moreover, the presented novel resonator and switching technique was compared with the recently proposed resonators and their switching techniques. The prototype for the antenna was also developed in order to validate its performance in wireless vital signs monitoring. The presented miniaturized resonator based antenna was utilized for tumor sensing and simulations were provided in this regard. Moreover, the deployment of the proposed resonator based UWB antenna sensor in Pipeline Integrity Monitoring system was also investigated and discussed.


A compact rectangular MS antenna for Ultra Wide Band applications is designed. In the proposed design the rectangular patch antenna designed with cutting a slot in ground of length and width 2.5mm and 3.0mm respectively at the back of feed line. By using the defective ground plane a wide BWof 9.782 GHz with frequency band 3.099 GHz to 12.278 GHz is achieved. The designed antenna with a compressed size of 30 mm x 30 mm is fabricated and tested. The antenna’s return loss and VSWR plots are presented here to confirm the complete UWB bands. Special configuration of patch antenna with slotted partial ground was designed and optimized using CST Microwave Studio.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document