scholarly journals Burst Assembly Framework for High Speed Optical Network

2018 ◽  
Vol 7 (3.27) ◽  
pp. 404
Author(s):  
H Saini ◽  
A K. Garg

Optical Burst Switching (OBS) is promising technique to support requirements of high speed optical networks. OBS network ingress node assembles packets into bursts. Burst assembly criteria have to be optimally chosen based on network requirements. In this paper, burst assembly framework is presented which can support optimal time/size value selection during burst formation. It is observed that, network with high timeout supports high Transmission Control Protocol (TCP) throughput for a range of burst size. For lower burst timeout values, throughput performance degrades only for small size bursts and further reduction in timeout threshold degrades throughput for range of burst size.  

Author(s):  
Mário M. Freire ◽  
Paulo P. Monteiro ◽  
Henrique J.A. da Silva ◽  
José Ruela

Recently, Ethernet Passive Optical Networks (EPONs) have received a great amount of interest as a promising cost-effective solution for next-generation high-speed access networks. This is confirmed by the formation of several fora and working groups that contribute to their development, namely the EPON Forum (http://www. ieeecommunities.org/epon), the Ethernet in the First Mile Alliance (http://www.efmalliance.org), and the IEEE 802.3ah working group (http://www.ieee802. org/3/efm), which is responsible for the standardization process. EPONs are a simple, inexpensive, and scalable solution for high-speed residential access capable of delivering voice, high-speed data, and multimedia services to end users (Kramer, Mukherjee, & Maislos, 2003; Kramer & Pesavento, 2002; Lorenz, Rodrigues, & Freire, 2004; McGarry, Maier, & Reisslein, 2004; Pesavento, 2003). An EPON combines the transport of IEEE 802.3 Ethernet frames over a low-cost and broadband point-to-multipoint passive optical fibre infrastructure connecting the optical line terminal (OLT) located at the central office to optical network units (ONUs) usually located at the subscriber premises. In the downstream direction, the EPON behaves as a broadcast and select shared medium, with Ethernet frames transmitted by the OLT reaching every ONU. In the upstream direction, Ethernet frames transmitted by each ONU will only reach the OLT, but an arbitration mechanism is required to avoid collisions. This article provides an overview of EPONs focused several issues: EPON architecture, multipoint control protocol (MPCP), quality of service (QoS), and operations, administration, and maintenance (OAM) capability of EPONs.


2015 ◽  
Vol 36 (4) ◽  
Author(s):  
Pravindra Kumar ◽  
Anand Srivastava

AbstractPassive optical networks based on orthogonal frequency division multiplexing (OFDM-PON) give better performance in high-speed optical access networks. For further improvement in performance, a new architecture of OFDM-PON based on spreading code in electrical domain is proposed and analytically analyzed in this paper. This approach is referred as hybrid multi-carrier code division multiple access-passive optical network (MC-CDMA-PON). Analytical results show that at bit error rate (BER) of 10


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.


2021 ◽  
pp. 189-232
Author(s):  
Debasish Datta

With the emergence of high-speed optical transmission, the pre-existing plesiochronous digital hierarchy (PDH) appeared unsuitable for achieving network synchronization, leading to the development of the synchronous optical network (SONET) and synchronous digital hierarchy (SDH) as the two equivalent standards for circuit-switched optical networks. Several bandwidth-efficient techniques were also developed to carry packet-switched data traffic over SONET/SDH networks, offering some useful data-over-SONET/SDH architectures. Subsequently, with the increasing transmission rates for SONET/SDH and Ethernet-based LANs, a convergent networking platform called optical transport network (OTN), was developed. With the ever-increasing volume of bursty data traffic, a standard for packet-switched ring networks, called resilient packet ring (RPR), was also developed for better bandwidth realization in optical fibers. In this chapter, we first present the SONET/SDH networks and the techniques for supporting the data traffic therein, followed by a description of the basic concepts and salient features of the OTN and RPR networks. (147 words)


2015 ◽  
Vol 73 (2) ◽  
Author(s):  
Abdulsalam A. Yayah ◽  
Abdul Samad Ismail ◽  
Yahaya Coulbaly

Optical Burst Switching (OBS) is perceived as the most favorable switching method for the next generation all optical networks to support the growth of the number of Internet users and to satisfy bandwidth demands for greedy-bandwidth applications which are in continuous growth. OBS consists of an edge node and a core node. The edge node is responsible for burst assembly which is the first process in an OBS network. Currently, there is only one review paper for burst assembly; the paper is limited in number of techniques reviewed. In this paper, we have undertaken a comprehensive review of burst assembly techniques proposed for OBS where techniques are reviewed by category. The aim is to identify strengths and weaknesses of these techniques. The analysis of the paper will assist researchers in finding problems; thus, a significant amount of time will be saved which can be used in developing appropriate solutions for OBS networks.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikhlesh Kumar Mishra ◽  
Kamal Kishore Upadhyay ◽  
N. K. Shukla

AbstractFor addressing needs of modern day communication needs, new type of networks are required to be evolved to cater the demand of high data rates. Use of survivable elastic-optical-network (EON) with existing passive-optical-networks (PON) may provide the solution for this. The present work focus on employing EON–PON based wave-length-division multiplexing enabled communication system comprises of 2×5 Gbps for downlink and 2×1 Gbps for uplink over a single-mode-fibre of length 100 km. The results are the evaluated via bit-error-rate analyser, q factor and eye diagrams.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashutosh Kumar Singh ◽  
Vanya Arun ◽  
Pallavi Singh ◽  
Kamal Kishore Upadhayay

AbstractAs technology advancing day by day, the data rate of optical network is moving towards Tb/s speed. The minimum capacity utilization and survivability are the crucial requirement in such high speed optical networks. This research work presents a new approach to calculate both working and spare capacity with the help of single mathematical programming model named as joint capacity planning model. The working traffic and restored traffic are routed jointly in proposed joint capacity planning model. Therefore the joint capacity planning model required minimum capacity in as compare to other optimization models. To evaluate our model, three example networks are proposed i.e., network A (6 node), network B (8 node) & National science foundation network (14 node). Results of these networks are analyzed and compared. The capacity utilization is optimized by increasing the backup paths of the optical networks. It has also been proved in this manuscript that capacity requirement is dependent on the backup path. The proposed joint capacity model provides fast restoration speed and guaranteed protection for optical network.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Bharat Naresh Bansal

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.


2020 ◽  
Vol 11 (1) ◽  
pp. 348
Author(s):  
Xiaosong Yu ◽  
Xian Ning ◽  
Qingcheng Zhu ◽  
Jiaqi Lv ◽  
Yongli Zhao ◽  
...  

Currently, with the continuous advancement of network and communication technology, the amount of data carried by the optical network is very huge. The security of high-speed and large-capacity information in optical networks has attracted more and more attention. Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. Introducing QKD into an optical network can greatly improve the security of the optical network. In order to reduce the cost of deployment on QKD infrastructure, quantum signals in QKD and classical signals in optical networks are multiplexed in the same fiber by wavelength-division manner. Moreover, due to the limited wavelength resources in an optical fiber, time-division technology is adopted to construct different kinds of channels in QKD system for efficient utilization of wavelength resources. Under such situation, how to satisfy the security requirements of service requests and complete the efficient scheduling of multi-dimensional resources, i.e., wavelengths and timeslots, is a challenging problem. This paper addresses this problem by considering multi-dimensional routing, wavelength, and timeslot allocation (RWTA) in short-distance quantum key distribution optical networks (QKD-ON), in which any two nodes can directly establish a quantum channel, and the maximum distance between any two nodes is less than the distance that can carry out point-to-point quantum key distribution process. While accommodating services with security requirements in QKD optical networks, to avoid the wavelength time-slot fragmentation caused by the constraints of wavelength consistency and time-slot continuity, we propose a time-window-based security orchestration strategy as well as relative-loss of time continuous compactness based RWTA strategy. We conducted the simulations under various scenarios, e.g., different key updating periods and different distributions on wavelength resources, etc., and the results show that the proposed strategy can achieve better performance compared with the baselines in terms of key success rate, key-updating delay, and blocking probability.


2010 ◽  
Vol 7 (1) ◽  
pp. 47-69
Author(s):  
J.A. Zubairi

This paper discusses the optical network management issues and identifies potential areas for focused research. A general outline of the main components in optical network management is given and specific problems in GMPLS based model are explained. Later, protection and restoration issues are discussed in the broader context of fault management and the tools developed for fault detection are listed. Optical networks need efficient and reliable protection schemes that restore the communications quickly on the occurrence of faults without causing failure of real-time applications using the network. A holistic approach is required that provides mechanisms for fault detection, rapid restoration and reversion in case of fault resolution. Since the role of SDH/SONET is diminishing, the modern optical networks are poised towards the IP-centric model where high performance IP-MPLS routers manage a core intelligent network of IP over WDM. Fault management schemes are developed for both the IP layer and the WDM layer. Faults can be detected and repaired locally and also through centralized network controller. A hybrid approach works best in detecting the faults where the domain controller verifies the established LSPs in addition to the link tests at the node level. On detecting a fault, rapid restoration can perform localized routing of traffic away from the affected port and link. The traffic may be directed to pre-assigned backup paths that are established as shared or dedicated resources. We examine the protection issues in detail including the choice of layer for protection, implementing protection or restoration, backup path routing, backup resource efficiency, subpath protection, QoS traffic survival and multilayer protection triggers and alarm propagation. The complete protection cycle is described and mechanisms incorporated into RSVP-TE and other protocols for detecting and recording path errors are outlined. In addition, MPLS testbed configuration procedure is outlined with suggested topologies. Open issues in this area are identified and current work is highlighted. It is expected that this paper will serve as a catalyst to accelerate the research and development activities in high speed networking.


Sign in / Sign up

Export Citation Format

Share Document