scholarly journals Design of a Square-Shaped Broadband Antenna with Ground Slots for Bandwidth Improvement

2018 ◽  
Vol 7 (3.6) ◽  
pp. 45
Author(s):  
K M. Jyothsna ◽  
S Suganthi

This paper portrays the design of a compact square-shaped microstrip broadband antenna using ground slots. Polygon shaped slots are placed on the ground under the feed line for bandwidth improvement. Similarly, rectangular slots are placed on the square patch for gain enhancement. Effect of these slots on the performance of the antenna in terms of impedance bandwidth, gain and directivity are studied.  Results of simulation tests show that a ground slot with proper dimensions placed under the feed line can improve the impedance matching and hence increase the bandwidth without affecting much the performance of the antenna. This compact antenna of size 9.098 x 9.098 mm can be very useful for applications where size is a major constraint. Simple microstrip feed is used to feed the patch. The percentage bandwidth of this antenna is 75.57 %. 

2021 ◽  
Vol 21 (1) ◽  
pp. 8-14
Author(s):  
Deok Kyu Kong ◽  
Jaesik Kim ◽  
Daewoong Woo ◽  
Young Joong Yoon

A modified proximity-coupled microstrip patch antenna with broad impedance bandwidth is proposed by incorporating proximity-coupled patch antenna into the rectangular open-ended microstrip feed line on a cavity structure. First we design a proximity-coupled microstrip antenna to have a wide bandwidth in the lower band centered at 7 GHz using a cavity-backed ground. To broaden the bandwidth of the antenna to the upper band, we then apply a rectangular open-ended microstrip feed line, adjusting the relative position to the cavity to generate an additional resonance close to 10 GHz. The combination of lower and upper band design results in a broadband antenna with dimensions of 30 mm × 30 mm × 9 mm (0.9λ<sub>0</sub> × 0.9λ<sub>0</sub> × 0.27λ<sub>0</sub>) is designed where λ<sub>0</sub> corresponds to the free space wavelength at a center frequency of 9 GHz. The measurement results verify the broad impedance bandwidth (VSWR ≤ 2) of the antenna at 77% (5.6–12.6 GHz) while the broadside gain is maintained between 6 dBi and 8 dBi within the operational broad bandwidth.


Author(s):  
Chandravilash Rai ◽  
Sanjai Singh ◽  
Ashutosh Kumar Singh ◽  
Ramesh Kumar Verma

Abstract A circularly polarized ring cylindrical dielectric resonator antenna (ring-CDRA) of wideband impedance bandwidth is presented in this article. The proposed ring CDRA consist of an inverted rectangular (tilted rectangular) shaped aperture and inverted L-shaped slotted microstrip feed line. The tilted rectangular shaped aperture and inverted L-shaped microstrip feed line generate two-hybrid mode HEM11δ and HEM12δ while ring CDRA and slotted microstrip feed line are used for the enhancement of impedance bandwidth. The proposed ring CDRA is resonating between 6.08 and 12.2 GHz with 66.95% (6120 MHz) impedance bandwidth. The axial ratio (AR) bandwidth of 6.99% (780 MHz) is obtained between 10.76 and 11.54 GHz with a minimum AR value of 0.2 dB at a frequency of 11 GHz. The proposed geometry of ring CDRA has been validated with measurement performed by VNA and anechoic chamber. The operating range of the proposed radiator is useful for different applications in X-band.


2015 ◽  
Vol 781 ◽  
pp. 24-27 ◽  
Author(s):  
Raghuraman Selvaraju ◽  
Muhammad Ramlee Kamarudin ◽  
Mohsen Khalily ◽  
Mohd Haizal Jamaluddin ◽  
Jamal Nasir

A Multi Input Multi Output (MIMO) Rectangular Dielectric Resonator Antenna (RDRA) for 1.8 GHz Long Term Evolution (LTE) applications is investigated and presented. The antenna consisting of two rectangular dielectric resonator elements, both resonators are fed by microstrip feed line is etched on FR4 substrate. The simulated impedance bandwidth for port1 and port2 is 26.38% (1.6176-2.1093 GHz) and 26.80% (1.6146-2.1143GHz) respectively for |S11| ≤ -6dB, which can operate on LTE band 1-4,9,10,35-37 and 39. The gain of the MIMO RDRA is 3.2 dBi and 3.1 dBi at 1.8 GHz for port 1and port 2, respectively. The S-parameters, isolation, gain, and MIMO performance such as correlation coefficient and diversity gain of the presented RDR Antenna have been studied.


A wideband coplanar waveguide (CPW) antenna with circular polarization characteristics using modified ground slot is studied in this work. Proposed design incorporates a hexagonal slot instead of rectangular slot, accounting for enhanced impedance matching. This ground slot is energized by a 50Ω feed line, resulting in excitation of two orthogonal phase quadrature modes (even-odd modes). Thus, fulfilling the essential criteria required for realizing circular polarization. A narrow horizontal slit (lg) is embedded in the ground plane at immediate left of feed line, accounting for wideband characteristics. 10dB impedance bandwidth of proposed antenna extends from 2.65- 5.60 GHz, while 3dB axial ratio bandwidth extends from 3.90- 5.80 GHz. Hence, overlapping bandwidth of proposed antenna extends from 3.90 - 5.60 GHz. RHCP characteristics with monopole radiation pattern makes proposed antenna useful for WLAN, radio navigation and radiolocation applications.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


Author(s):  
Umair Rafique ◽  
Sami ud Din ◽  
Hisham Khalil

Abstract A compact co-planar waveguide (CPW) fed planar elliptical antenna has been designed and presented for super wideband (SWB) characteristics. The designed antenna has an overall size of 30 × 30 × 1.57 mm3, and it consists of an elliptical patch radiator fed using a modified 50 Ω CPW-fed tapered microstrip feed line. By using a semi-ring shaped structure with a tapered feed line, an impedance bandwidth of 180.66% has been observed from 1.27 to 25 GHz with a ratio bandwidth of 19.68:1. To validate simulation results, the designed antenna has been fabricated and measured, and a reasonable agreement has been observed between simulated and measured results. It has also been observed that the designed antenna offers good radiation properties over the entire operating bandwidth. The simulated average gain and radiation efficiency of the proposed SWB antenna is noted to be 4.3 dBi and 95.77%, respectively; while the measured average gain and radiation efficiency is 3.8 dBi and 94.69%, respectively.


2020 ◽  
Vol 9 (4) ◽  
pp. 1497-1505
Author(s):  
Anuj Kumar ◽  
Anukul Jindal ◽  
Apurva Singh ◽  
Reshma Roy ◽  
Om Prakash Kumar ◽  
...  

In the proposed paper, a uniplanar asymmetric coplanar strip (ACS) fed antenna with closed V-shaped radiating patch of size  printed on FR4 substrate with loss tangent ( =0.02, height (h)=1.6mm, and dielectric constant of 4.4 covering WiMAX, X-band and WLAN applications is presented. The proposed closed V-shaped radiating patch is formed by joning two rectangular stubs. The resultant shape of the radiating patch is obtained by adding rectangular strips to feed line until desired multiband results are achieved.  The advantage of this structure is that it forms simple configuration as well as helps the overall antenna in attaining three distinict useful frequency band with good impedance matching for S11-10 dB criteria. The proposed ACS fed antenna operates at 3.1 (WiMAX), 5.0 (WLAN) and 9.9 (X-band) GHz with impedance bandwidth ranging from 2.7-3.9 GHz, 4.4-5.5 GHz and 9.5-10.3 GHz in simulation. Under measurement the proposed antenna shows multiband phenomenon at 3.2, 5.3 and 9.7 GHz with impedance bandwidth ranging from 2.8-3.7 GHz, 4.6-5.4 GHz and 9.4-10 GHz, respectively. The antenna exhibits simulated gain of 2.51, 1.18 and 1.96 dB at the corresponding frequency bands of 3.1, 5.0 and 9.9 GHz. The key parameters of the antenna like length and width of the multi-branched strips are optimized to get the multiband operation. The deisign simulation is carried out in Ansys HFSS (High frequency Simulation Software) where different characteristics of the proposed antenna are investigated. The evolution and optimization process is dealt in detail with the help of S11, VSWR, current distributions, radiation patterns and gain.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Mohammad Jakir Hossain ◽  
Mohammad Rashed Iqbal Faruque ◽  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Md. Atiqur Rahman

AbstractIn this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1–12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.


2016 ◽  
Vol 9 (4) ◽  
pp. 859-864 ◽  
Author(s):  
Alaknanda Kunwar ◽  
Anil Kumar Gautam

A microstrip transmission line fed fork-shaped planar antenna is proposed for Bluetooth, WLAN, and WiMAX applications. The antenna made of a microstrip feed line, fork-shape patch on one side and defected ground plane on the other side of dielectric substrate. A fork-shape is formed by two side circular arms and a rectangular central arm. The inverted T-shaped ground plane with a rectangular slot in the center arm is used to increase the bandwidth with better impedance matching of the lower band. The antenna is practically fabricated to validate the design. The antenna resonate dual band to cover an entire the WLAN and WiMAX bands. The antenna shows the measured bandwidth of 410 MHz (2.26–2.67) and 3.78 GHz (3.0–6.78 GHz) at lower and upper bands, respectively.


Two low profile antennas using FR4 and Rogers RT/duroid 5880 as dielectric materials are proposed in this manuscript. To obtain the broadband response the strip-slot hybrid structure is introduced. The two antennas proposed in this manuscript consist of four strips that are segregated through three narrow tapered slots. Using the aperture couple microstrip feed line proper impedance matching is obtained and the slotted patch structure is excited. The simulated bandwidth of 45% is obtained by using the Rogers RT/duroid 5880 as dielectric material with stacked patch structure and gain obtained to be 9.02dB resonating at 4.2GHz of frequency. Proposed design using FR4 as the dielectric material has two resonance frequencies at 4.8GHz and 6.2GHz. The simulated bandwidth of 50% at 4.8GHz and 38.71% at 6.2GHz is obtained with gain of 6.040dB at 4.8GHz. A prototype of the same antenna using the FR4 as dielectric material is also constructed and tested, the tested results shows an impedance bandwidth of 21.87%


Sign in / Sign up

Export Citation Format

Share Document