Performance and emission characteristics of turbocharged diesel engine fueled with palm biodiesel blends

2018 ◽  
Vol 7 (3) ◽  
pp. 1040
Author(s):  
Byungmo Yang ◽  
M A. Kalam ◽  
Haengmuk Cho

The exhaustion of fossil fuels and sharp rise in crude oil prices has led to the development of various alternative fuels. Alternative fuels are a necessity to meet rising energy consumption rates and to ensure eco-friendly growth. Alternative fuels that can be regenerated, are sustainable and have clean burning capacity to help promote an eco-friendly development. Whereas there have been various ideas and technologies relating to biodiesel as an alternative fuel, these tend to be restricted to the distant future insofar as compression-ignition engines are concerned. Biodiesel, produced by reacting triglycerides which are the main component of animal or plant-based fatty acids with methanol, is known to be an eco-friendly alternative fuel that can take the place of conventional petroleum diesel. In the present study, biodiesel (palm oil) was mixed at a certain ratio with commercially sold diesel, then introduced into a TCDI engine which was run at low load conditions for engine performance and exhaust gas measurement. Both engine output and torque were reduced, and fuel consumption increased to make up for the reduction in output. There were slight reductions in NOx and CO2 emissions, but changes in CO and HC emissions were negligible.  

Author(s):  
Maroa Semakula ◽  
Freddie Inambao

Alternative fuels available at low cost, friendly to natural environments and meet the energy needs and demands, have witnessed a growing demand and use today. Ethanol is an attractive renewable energy source with a high content of oxygen. Ethanol can be produced through ethanolisis, however for this work direct blending of conventional diesel, waste plastic pyrolysis oil and ethanol with commercial fuel improver CI-0808 purchased from Innospec company was attempted. The primary purpose of adding a cetane improver was to improve the combustion characteristics of the blends by at least 1- 3 ignition quality points. Five mixing ratios were chosen in the following order, 50:25:25, 60: 20:20, 70: 15:15, 80: 10:10 and 90: 5:5 for Waste Plastic Pyrolysis Oil (WPPO), ethanol and conventional diesel (CD) respectively. However, for the fuel additive mixing ratio the total volume percentage was considered and the ratio put at 0.01% of the total quantity of blended fuel. In this work WPPO, diesel blends and fuel additives improvers were used as alternative fuel. This was to evaluate their performance and emission characteristics in a stationary single cylinder water cooled experimental diesel engine. The CI-0808 was added due to its potential power to reduce emissions of CO, UHC, NOX, PM and improved engine performance. The results obtained were compared carefully to ASTM standards and discussed using graph curves figures and tabulated values. The conclusion was that ethanol and WPPO blends can be used in diesel engines as alternative fuel without modification. Used in combination with cetane improvers the emissions reduce significantly and performance improved equalling that of conventional diesel fuel.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


2015 ◽  
Vol 787 ◽  
pp. 751-755
Author(s):  
P. Vithya ◽  
V. Logesh

The use of fossil fuel is increasing drastically due to its consumption in all consumer activities. The utility of fossil fuel depleted its existence, degraded the environment and led to reduction in underground carbon resources. Hence the search for alternative fuels is paying attention for making sustainable development, energy conservation, efficiency and environmental preservation. The worldwide reduction of underground carbon resources can be substituted by the bio-fuels. The researchers around the world are finding the alternate fuel that should have the least impact on the environment degradation. This paper aims at finding an alternative for diesel and reducing the pressure on its existing demand. This study aimed at using two types of oil mixtures namely cashew nut shell oil and camphor oil mixed with diesel, turpentine oil mixed with diesel in different proportions as fuel in twin cylinder four stroke diesel engine. Performance and emission analysis have been performed by using exhaust gas analyzer in the oil samples. It was observed that 40% cashew nut shell oil and 10%camphor oil mixed with 50% diesel, 50% turpentine oil mixed with 50% diesel shows the better engine performance and also less emissions.


2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Currently the Biggest threat to environment and public health is Air Pollution which is caused by emissions of hydrocarbons, nitrogen oxides, carbon oxides and sulphur oxides by burning of fossil fuels. In recent years consumption of fossil fuels by various factories has rapidly increased that has let for the search of alternative fuels. These fuels are also known as non-conventional fuels which can be used as a substitute for conventional fuels Algae oil is one of the promising potential sources of bio-fuels generated from microbes. It is generally preferred because it is sustainable and environment-friendly oil which have numerous advantages. So the algae oil has used for performance and emission test on a diesel engine. The blends have been made for testing B5, B10. In which 5% of methanol has mixed and others are raw algae oil (5% for B5 and 10% for B10) and Diesel (90% for B5 and 85% for B10). The Kirlosker Engine with 6.97 HP (5.2KW)@1500rpm is used for Performance analyzing. Parallels AVL emission analyzer and smoke detector were connected with the exhaust of the engine. All values of gases were displayed and compared.


2013 ◽  
Vol 14 (2) ◽  
pp. 218-224

Cement production is an energy-intensive process. Utilisation of fossil fuels is common practice in the cement industry around the world. Alternative fuel substitution rates increase every year. More specifically, 18 % of the fuel used by the European cement industry in 2006 consists of alternative fuels. This study aims to investigate the prospects for the partial replacement of conventional fossil fuels currently used in the TITAN cement factory in Thessaloniki, Greece, with alternative fuels, focusing on the impact of alternative fuel use on the emissions of air pollutants from co-incineration operations. Air emissions were estimated for both the conventional fuel and mixtures of conventional fuel with alternative fuels, based on emission factors found in the literature but also using the measurements conducted by TITAN in 2010. Emission estimates indicate that legislative limit values for all pollutants are not exceeded. Based on the emission estimates and measurements in the flue gas, the dispersion of the plume around the factory has been described with an appropriate numerical simulation model. Results suggest that the factory’s contribution to the air pollution levels in the surrounding area is very low for most regulated pollutants.


2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


Author(s):  
Shyamsundar Rajaraman ◽  
G. K. Yashwanth ◽  
T. Rajan ◽  
R. Siva Kumaran ◽  
P. Raghu

World at present is confronted with the twin crisis of fossil fuel depletion and environmental pollution. Rapid escalation in prices and hydrocarbon resources depletion has led us to look for alternative fuels, which can satisfy ever increasing demands of energy as well as protect the environment from noxious pollutants. In this direction an attempt has been made to study a biodiesel, namely Moringa Oil Methyl Esters [MOME]. All the experiments were carried out on a 4.4 kW naturally aspirated stationary direct injection diesel engine coupled with a dynamometer to determine the engine performance and emission analysis for MOME. It was observed that there was a reduction in HC, CO and PM emissions along with a substantial increase in NOx. MOME and its blends had slightly lower thermal efficiency than diesel oil.


Sign in / Sign up

Export Citation Format

Share Document