scholarly journals Effect Of Co3+ Substitution on Electro-Magnetic Properties of Pr¬0.75¬Na¬0.25¬mno¬3 ¬and Nd¬0.75¬Na¬0.25¬mno¬3¬ Manganites

2018 ◽  
Vol 7 (4.30) ◽  
pp. 389
Author(s):  
Nurhabibah Nabilah Ab Mannan ◽  
Sufia Aqilah Razali ◽  
Suhadir Shamsuddin ◽  
Mohamad Zaky Noh ◽  
Zakiah Mohamed

This paper reports influences of cobalt (Co) substituted at Mn-site of Pr­0.75­Na­0.25Mn1-xCo­x­O­3 and Nd0.75Na0.25Mn1-yCoyO3 on structure, electrical transport and magnetic properties. All of the samples were prepared via standard solid state reaction method. X-ray diffraction measurement indicates that all samples were crystallized in an orthorhombic structure (space group Pnma). Resistivity measurement displays the x = 0 sample manifests an insulator behavior while metal-insulator transition was found at 108 K and 84 K for x = 0.02 and 0.05 respectively for Pr­0.75­Na­0.25Mn1-xCo­x­O­3. On the other hand, all of the samples for Nd0.75Na0.25Mn1-yCoyO3 showed insulator behavior down to low temperature and analysis of the resistivity change with respect to temperature, dlnρ/dT-1 versus T reveals a slope changes of resistivity have been recorded. Two obvious peaks were recorded from the analysis for y = 0.02 and 0.05 which can be suggested to the existence of charge order transition at the vicinity. For magnetic properties, x = 0 sample showed a paramagnetic-antiferromagnetic transition and further substitution of Co, x = 0.02 and 0.05, induce the paramagnetic-ferromagnetic transition and antiferromagnetic arrangement respectively. Meanwhile, further substitution of Co, y = 0.02 and 0.05 indicate antiferromagnetic transition with increasing T­N­­­ as Co increased.

2018 ◽  
Vol 7 (4.30) ◽  
pp. 76
Author(s):  
Rabiatul Adawiyah Zawawi ◽  
Nurul Nasuha Khairulzaman ◽  
Suhadir Shamsuddin ◽  
Norazila Ibrahim

Cr doping in charge-ordered Pr0.75Na0.25Mn1-xCrxO3 and Nd0.75Na0.25Mn1-yCryO3 have been synthesized using conventional solid-state method to investigate its effect on structural, electrical transport and magnetic properties. X-ray diffraction (XRD) analysis for both compounds showed that the samples were crystallized in an orthorhombic structure with Pnma group. The unit cell volume value      decrease as the Cr-doped increased indicating the possibility of Mn3+ ion was replaced by Cr3+ due to the different of ionic radius. The temperature dependence of electrical resistivity showed an insulating behavior down to the lower temperature the both parent compound (x = 0 and y = 0). Successive substitution of Cr at Mn-site in Pr0.75Na0.25Mn1-xCrxO3 manganites induced the metal-insulator (MI) transition temperature around TMI~120 K and TMI~122 K for x = 0.02 and x = 0.04 samples respectively suggestively due to the enhancement of double-exchange (DE) mechanism as a result of suppress the CO state. Analysis of resistivity data of dlnρ/dT-1 vs. T in Nd0.75Na0.25Mn1-yCryO3 manganite, showed a peak around 210 K and 160 K for y = 0 and 0.02 samples respectively while no peak was observed for y = 0.05 sample indicate the charge-ordered (CO) weakened. AC susceptibility, χ’ measurements in Pr0.75Na0.25Mn1-xCrxO3 exhibits paramagnetic to ferromagnetic-like with curie temperature, TC increases from 132 K for x = 0.02 to 141 K for x = 0.04 with Cr content indicate the suppression of CO state meanwhile in Nd0.75Na0.25Mn1-yCryO3 showed paramagnetic to anti-ferromagnetic transition as Neel temperature TN increases from 115 K for y = 0.02 to 125 K for y = 0.05.


2020 ◽  
Vol 855 ◽  
pp. 255-260
Author(s):  
Mukhtar Effendi ◽  
Efi Solihah ◽  
Candra Kurniawan ◽  
Wahyu Tri Cahyanto ◽  
Wahyu Widanarto

The synthesize of Nd3+-strontium hexaferrite magnetic material by the solid-state reaction method has been successfully carried out. This study aims to determine the effect of Nd3+ on the structure, magnetic properties, and microwave absorption capability of the material. Preparation of (1-x)SrO:xNd2O3:6Fe2O3 where x = 0, 10, 20, and 30 mol% using basic material in the form of SrCO3 powder, Nd2O3 powder and Fe3O4 from natural iron sand. The characterization includes the X-Ray Diffraction (XRD) examination to determine the crystal structure, the Scanning Electron Microscope (SEM) for exploring the surface morphology, Vibrating Sample Magnetometer (VSM) for the magnetic properties investigation of material, and Vector Network Analyzer (VNA) for microwave absorption capability analysis. The XRD results show that the addition of Nd3+ doping increases the number of SrNdFeO4 phases. The phase has a tetragonal crystal system that has cell parameters a = b = 3.846 Å, and c = 12.594 Å. The magnetic properties of the material showed that the addition of Nd3+ decreased the saturation and remanence magnetization values, whereas the value of the coercivity field increased. Meanwhile, the best microwave absorption occurs in samples with the addition of Nd3+ as much as 0.3 mol, which results in a reflection loss value of -18.9 dB with a frequency bandwidth of 3.9 GHz.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 85
Author(s):  
Sufia Aqilah Razali ◽  
Norazilah Ibrahim ◽  
Suhadir Shamsuddin ◽  
Mohamad Zaky Noh

K doping in the compound of Nd0.75Na0.25-xKxMn1O3 (x = 0, 0.05 and 0.10) manganites have been investigated to study its effect on crystalline phase and surface morphology as well as electrical transport and magnetic properties. The structure properties of the Nd0.75Na0.25-xKxMnO3 manganite have been characterized using X-ray diffraction measurement and it proved that the crystalline phase of samples were essentially single phased and indexed as orthorhombic structure with space group of Pnma. The morphological study from scanning electron microscope showed there was an improvement on the grains boundaries and sizes as well as the compactness with K doping suggestively due to the difference of ionic radius. On the other hand, DC electrical resistivity measurement showed all samples exhibit insulating behavior. However, analysis of dlnρ/dT-1 vs. T revealed the clearly peaks could be observed at temperature 210K for x = 0 and the peaks were shifted to the lower temperature around 190 K and 165 K for x = 0.05 and x = 0.1 respectively, indicate the existence of charge ordering (CO) state in the compound. Meanwhile, the investigation on magnetic behavior showed all samples exhibit transition from paramagnetic phase to anti-ferromagnetic phase with decreasing temperature and the TN was observed to shift to lower temperature suggestively due to weakening of CO state


2010 ◽  
Vol 19 (02) ◽  
pp. 247-254 ◽  
Author(s):  
NGUYEN VAN MINH ◽  
DAO VIET THANG

Multiferroic Bi 1-x Sm x FeO 3(x = 0.00, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. X-ray diffraction measurement was carried out to characterize the crystal structure and to detect the impurities existing in these ceramics. The substitution of rare earth Sm for Bi was found to decrease the impurity phase in BiFeO 3 ceramics. There is strong evidence that both lattice constants a and c of the unit cell become smaller as the Sm 3+ content is increased. The effect of introducing Sm 3+ is shown to decrease the optical band gap for doped sample Bi 1-x Sm x FeO 3. Additionally, the temperature-dependent Raman measurement performed for the lattice dynamics study of Bi 1-x Sm x FeO 3 samples reveals a strong band centered at around 1000–1300 cm-1 which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi 1-x Sm x FeO 3 samples. This two-phonon signal is shown to broaden with increasing x. The Raman spectra at low wavenumbers are suggested to be related with magnon in this system.


2013 ◽  
Vol 03 (04) ◽  
pp. 1350033 ◽  
Author(s):  
Radheshyam Rai ◽  
Shweta Thakur ◽  
M. A. Valente ◽  
Andrei L. Kholkin

The multiferroic ( Bi 0.95 RE 0.05)( Fe 0.95 Mn 0.05) O 3 (where RE = Pr , Tb and Dy ) has been synthesized using solid-state reaction technique. Effects of Pr , Tb and Dy substitution on the structure, electrical and ferroelectric properties of ( Bi 0.95 RE 0.05)( Fe 0.95 Mn 0.05) O 3 samples have been studied by performing X-ray diffraction, dielectric measurements and magnetic measurements. The crystal structure of the ceramic samples have a monoclinic phase. The vibrating sample magnetometer (VSM) measurement shows a significant change in the magnetic properties of Pr -, Tb - and Dy -doped ( Bi 0.95 RE 0.05)( Fe 0.95 Mn 0.05) O 3. It is seen that coercive field (Hc) and remanent magnetization (Mr) increases for Pr but decreases for Dy and Tb .


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2148
Author(s):  
Marcin Świątkowski ◽  
Suneel Lanka ◽  
Agnieszka Czylkowska ◽  
Katarzyna Gas ◽  
Maciej Sawicki

The first coordination compound of copper and tiglic acid named tetrakis(μ-tiglato)bis(tiglic acid)dicopper(II) was synthesized and crystallized from water solution. Its structure was determined and analyzed based on X-ray diffraction measurement. The paddle-wheel coordination system of the investigated compound was compared with other similar copper structures known in the literature. The Hirshfeld analysis was used for the detailed analysis of intermolecular interaction. The new compound was also characterized in terms of infrared absorption, thermal, and magnetic properties. The antiferromagnetic coupling of copper ions was found.


2014 ◽  
Vol 979 ◽  
pp. 124-127 ◽  
Author(s):  
Thitipong Kruaehong

The YBa2Cu3O7-δ(Y123) compounds were synthesized by solid state reaction method. The home-made four-probes apparatus was used for the resistivity measurement. The highest Tc is 91.95 K in sample C and sample A has lowest Tc onset at 89.85 K. The crystal structure properties and oxygen content were characterized by powder X-ray diffraction using CuKα radiation (λ=1.5406 Å). The Pmmm and Pnma space group corresponding on the superconducting phase and the non-superconducting phase. The atomic position of samples were consisted of various element atom. The longer time of oxygen-doping, the increase the critical temperature , superconducting phase and c lattice parameters.


2015 ◽  
Vol 05 (04) ◽  
pp. 1520001 ◽  
Author(s):  
Radheshyam Rai ◽  
Poonam Kumari ◽  
M. A. Valente

In this paper, we investigated the influence of rare earth ([Formula: see text] and Gd) doped Ba[Formula: see text]RE[Formula: see text]Ca[Formula: see text]Ti[Formula: see text] Mn[Formula: see text]Nb[Formula: see text]Zr[Formula: see text]O3 (BCTMNZ) ceramics were fabricated by using a conventional solid-state reaction method. The doping effects of La and Gd on the structural and magnetic properties were studied. The structural pattern of the ceramic samples were investigated by X-ray diffraction and the results indicated that both samples shows an orthorhombic structure with pure phase. Strain and crystalline size values for Gd and La doped were 0.31–0.33% and [Formula: see text]–[Formula: see text]m, respectively. The room temperature hysteresis loops were obtained by using a vibrating sample magnetometer. La doped ceramic showed the higher value of magnetization i.e., [Formula: see text]B/f.u. as compared to Gd doped BLTMNZ ceramics.


2011 ◽  
Vol 694 ◽  
pp. 461-465
Author(s):  
Ru Xin Che ◽  
Bing Yu ◽  
Chun Xia Wang

The core-nanoshell composite materials doped with Sm were prepared by a solid-state reaction method. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with Sm. The thermal decomposition process of the sample was investigated by thermogravimetric analysis-differential scanning calorimetry ( TG- DSC ). The morphology and composition of the composite materials were investigated by the X-ray diffraction analysis ( XRD ), scanning electron microscope ( SEM ) and energy disperse spectroscopy ( EDS ). The results of vibrating sample magnetometer analysis ( VSM ) indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The results show that doped with Sm can enhance the coercivity too, so the magnetic properties could be promoted further by the adjustment of compositions and the use of special techniques. The magnetic properties of the core-nanoshell composite material are better than that of single-phase.


Sign in / Sign up

Export Citation Format

Share Document