scholarly journals Rheological properties measurement of Mucuna solannie as cement slurry extender: characterization and verification using rheological models

2020 ◽  
Vol 9 (4) ◽  
pp. 842
Author(s):  
Igwilo K. Chinwuba ◽  
Uwaezuoke Nnaemeka ◽  
Onyebuchi Nwanwe ◽  
Amaefule C. Vivian ◽  
Abubakar U. Raji

Rheological properties of lead cement slurry with Mucuna solannie admixture as an extender was measured in accordance with API standard. Bentonite extender was used as a control. The elemental and oxide compositions of Mucuna solannie were determined using Scanning Electron Microscope and X-Ray Florescence (XRF) methods, and rheological properties were obtained using rheometer after conditioning. The rheological data from Mucuna solannie and bentonite lead slurries were validated using Bingham Plastic and Herschel-Bulkley models. The result showed that Mucuna solannie contains high carbon atomic concentration and is responsible for its high rheological properties values. Lead slurry prepared with Mucuna solannie gave higher plastic viscosity, yield point and gel strength than that of bentonite. Herschel-Bulkley model described the rheological properties better than Bingham Plastic model. Due to high rheological properties values of the slurry prepared with Mucuna solannie, dispersant is needed for the optimization of the yield point and gel strength. 

Author(s):  
Suzana Caetano da Silva Lannes ◽  
Magda Leite Medeiros

Flow behavior of chocolate drinks from Cupuassu (Theobroma grandiflorum, Sterculiaceae) from instantised and normal formulation, and enriched with calcium, were studied. Flow behavior was described using common rheological models (Newton, Power Law, and Bingham plastic). Experimental results, obtained at 25 oC and 40oC, fitted mostly the Ostwald and Bingham models, with R2 ? 0.997. The Newtonian model has 0.886 ? R2 ? 0.991. At 25 oC, as expected, viscosity of samples was higher and pseudoplasticity increased (n values were lower than 1). The spray-dryer process lead to differences of rheology of the ``chocolate'' milk drinks. The addition of microcrystalline cellulose plus calcium leads to a lower viscosity.


Author(s):  
Khalil Rehman Memon ◽  
Aftab Ahmed Mahesar ◽  
Shahzad Ali Baladi ◽  
Muhannad Talib Sukar

The experimental study was conducted on rheological properties in laboratory to measure the integrity of cement slurry. Three samples were used and analyzed at different parameters to check the elasticity of cement slurry. Additives with various concentrations, i.e. silica fume % BWOC (Present by Weight on Cement) (15, 17, 19 and 21), dispersant % Wt (Percent Weight) (0.21, 0.26 and 0.31) and additional 1; % Wt of fluid losscontrol were used to improve the performance of the cement slurry at the temperature of 123oC. The results have shown that increase in the concentration of dispersants that have caused to decrease in the Plastic Viscosity (PV), Yield Point (YP) and GS (Gel Strength). The rheological properties of cement were improved with the addition of fluid loss control additive in 21 % BWOC (Present by Weight on Cement) silica fume increase the water quantity in cement slurry that improve its durability and to reduce the strength retrogression in High Temperature High Pressure (HTHP) environment. Results were achieved through HTHP OFITE Viscometer (Model 1100).


2020 ◽  
Vol 21 (2) ◽  
pp. 47-56
Author(s):  
Douaa Hussein Ali ◽  
Muhannad A.R. Mohammed

   This research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studied is from 50 to 200 °F. The results shows that the rheological properties (plastic viscosity, apparent viscosity and yield point) decreased as temperature increased for all prepared samples of non-Newtonian fluids.


2020 ◽  
Vol 20 (8) ◽  
pp. 4907-4913
Author(s):  
Zhenning Shi ◽  
Shuangxing Qi ◽  
Ling Zeng

Rheological properties have a great influence on mechanical behavior and durability of fresh cement slurry after construction and hardening. For this reason, a series of experiments were carried out in this study to investigate the effects of different nanostructured TiO2 (NT) contents on rheological properties of nanostructured TiO2-cement (NTC) composite slurries. Moreover, the microstructure of NTC was analyzed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Results showed that the shear stress was increased followed by increased NT content. Variation of viscosity with time was divided into initial decline period, initial stable period, growth period and final stable period. During the first two periods, the viscosity decreased first and then increased with increased NT content. Moreover, the viscosity showed a reverse variation during the latter two periods. In addition, it was also noted that the reasonable range for NT content of cement slurry was 0%–1.5%.


2017 ◽  
Vol 43 (5) ◽  
pp. 2562 ◽  
Author(s):  
G.E Christidis ◽  
P. Katsiki ◽  
A. Pratikakis ◽  
G. Kacandes

In this contribution we examine the rheological properties of palygorskite rich clays from the Ventzia Basin, W. Macedonia, Greece. The clays consist of palygorskite and/or dioctahedral Fe-rich smectite (nontronite) and quartz as main components, and serpentine, amphibole and sepiolite as minor constituents. The apparent and plastic viscosity and yield point increase with increasing concentration of clay in the suspension. Flow is Newtonian for 1% suspensions, becoming gradually Bingham plastic (3% clay suspensions) and then pseudoplastic with yield point described by the Herschel Bulckley flow model. In the case of suspensions cf smectite-free clays Bingham plastic flow behaviour was not observed. Addition of 1M NaCl electrolyte deteriorates the rheological behaviour of the smectite-bearing palygorskite clays but it does not affect significantly the smectite-free, palygorskite rich clays. The different rheological properties of the palygorskite compared to smectite is due to the different morphological and crystal-chemical properties of these two minerals. It is suggested that the palygorskite-rich clays can be used successfully as drilling muds in seawater based drilling fluids, in which smectite-based drilling muds tend to flocculate.


2017 ◽  
Vol 11 (1) ◽  
pp. 274-284
Author(s):  
Kaffayatullah Khan ◽  
Shaukat Ali Khan ◽  
Muhammad Umair Saleem ◽  
Muhammad Ashraf

Background: Bentonite clays are widely used in a drilling operation and play a vital role as a drilling fluid. Bentonite clay mud performs several functions during the drilling operation and facilitates the drilling process. Objective: In this study, the locally available raw bentonite clays were investigated to evaluate its potential use as a mud for borehole drilling operation after its improvement with the additives. Method: Rheological properties such as plastic viscosity, yield point and gel strength were evaluated by using a viscometer and filtrate loss test was performed by using filter press on both locally available raw bentonite clays and the commercial bentonite named as Mill gel. Results: From the test results obtained for the up gradation of clays with the different beneficiating materials, the drastic increase in the plastic viscosity, yield point and gel strength has been observed. It shows that Xanthum gum produced better results for the improvement of rheological properties of such clays. Carboxymethyl cellulose and starch were used as additives and it has been observed that carboxymethyl cellulose has improved both viscosity and filtrate loss control, whereas starch muds have the best filtration control properties. Conclusion: Improved bentonite clays have rheological and filtration characteristics that have satisfied American Petroleum Institute specification at optimum conditions of clay. It was concluded that improved clays are the suitable material for the drilling operations and suitable to substitute commercial bentonite.


2018 ◽  
Vol 24 (12) ◽  
pp. 12-25 ◽  
Author(s):  
Amel Habeeb Assi ◽  
Ramzi Riyadh Khazeem ◽  
Ahmed Salah Salem ◽  
Alaa Tahseen Ali

This research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highest shear stress and yield point than the others polymers, but Xanthan has the highest effect on plastic viscosity than other polymers. All polymers reduce filtration loss. The polymer solution mud failed to suspend the barite so we cannot use it as drilling fluid even so this mud has good Rheological properties (PV and YP). The maximum amount of each polymer is founded for the studied clay types.                                                             


Author(s):  
Tariq Ahmed ◽  
Nura Makwashi

The selection and control of a suitable drilling fluid is necessary to successfully drill an oil and gas well. The rheological properties of drilling fluids vary with changes in conditions such as time and temperature. Slight changes in these conditions can cause unpredictable and significant changes in the mud’s properties. This makes it necessary to study the rheology of drilling fluids and how it is affected by these changes. At the rig sites, tests are carried out by the mud engineers to ensure that the properties of the drilling fluids are within the required limits. Similar tests were carried out at the laboratory in this work to determine the plastic viscosity, yield point, gel strength of mud samples at different conditions of ageing time, temperature and concentration of Xanthan gum (X.G) used as an additive. The Experiments carried out were grouped into three. The first was done with the aim to further explain how the Bentonite and Sepiolite water-based drilling fluids behaves after been aged for certain period. The second sets of experiments were conducted to investigate how the rheological properties of water-based Bentonite muds are affected by different concentration of xanthan gum added as an additive to improve the muds properties and the last sets of experiments were done to investigate the ageing effect on Bentonite mud treated with 250mg/L xanthan gum. Effects of temperature were also considered in these experiments with a 10℃ variation in the first group and 20℃ in the other two groups between readings from 20℃ to 60℃ . Results obtained indicated that Sepiolite water-based drilling fluid offers better plastic viscosity and yield point as compared to Bentonite water-based drilling fluids. It was also found that the viscosity and yield point of Sepiolite, Bentonite and treated Bentonite muds decreases with increase ageing time and temperature while the gel strength increases with ageing time but similarly decreases with increase in temperature. In the second group, results obtained indicated that plastic viscosity, yield point and gel strength increases as concentration of xanthan gum increases, all of which decreases with increase in temperature.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2369
Author(s):  
Chengcheng Tao ◽  
Eilis Rosenbaum ◽  
Barbara G. Kutchko ◽  
Mehrdad Massoudi

Gas migration in oil and gas wells is defined as gases and/or fluids from adjacent formations invading a freshly cemented annulus. During well completions, gas and/or fluids can migrate to zones with lower pressure or even to the surface. Static gel strength (SGS), related to the yield stress of the cement, is a widely accepted measurement used to predict and minimize gas migration. In this review article, we look at the mechanisms and some possible solutions to gas migration during oil and gas well cementing. The use of static gel strength (SGS) and experimental measurements for SGS and wellbore pressure reduction are discussed. Rheological properties, including the yield stress and the viscosity of cement slurries, are also briefly discussed. Understanding the rheological properties of cement is complex since its material properties depend on cement type, as well as the shape and size distribution of cement particles. From this brief review, it is evident that in order to reduce free water and settling of the cement particles, to lower fluid loss, and to develop compressive strength in the early stages of cementing, an optimal cement slurry design is needed. The SGS test is a standard method used in estimating the free water in the well and could be a reference for gas migration reduction for oilwell cement slurries.


Author(s):  
Amanze Josiah Destiny ◽  
Fortune Chukwuebuka Amanze

The formulation of an oil-based mud was made possible with the oil extracted from rubber seeds using the famous soxhlet extraction method. The mud was formulated using the API standard of 25 g of bentonite to 350 mL base fluid. The choice of Rubber oil comes as a result of its flash point and aniline point which lies in the range of base oils used for mud formulation. The rheological properties of the rubber OBM were beyond the scope of the viscometer and hence thinner was added to reduce its viscosity and its suitability to compete favorably with diesel OBM was checked. The 10-sec and 10-min gel strength of the Rubber OBM was recorded as 68 lb/100 ft2 and 69 lb/100 ft2 respectively while that of Diesel was 65 lb/100 ft2 and 67 LB/100 ft2 . The plastic viscosity of Rubber OBM was 12 cp while that of Diesel was 17 cp. They both exhibited Bingham Plastic behavior and a similar yield point of 146 lb/100 ft2 . The formulated mud samples were subjected to temperatures of 60 oC and 75 oC and it was discovered that Rubber OBM was likely to retain its rheological property than diesel OBM. Comparison with other rheological properties of diesel OBM showed that the formulated mud could be used alternatively for diesel in drilling operations.


Sign in / Sign up

Export Citation Format

Share Document