AN INVESTIGATION OF GREYWATER ONSITE REUSE POTENTIAL IN AN ARID ENVIRONMENT

Author(s):  
Mohamed A Hamouda ◽  
Jamila Al Mansoori ◽  
Maitha Al Nuaimi ◽  
Muna Alsaedi ◽  
Mouza Al Shamsi

Wastewater originating from bathtubs, showers, hand basins, kitchen sinks, dishwashers and laundry machines is usually not as heavily polluted as toilet water and is thus given the name greywater. Greywater separation for onsite reuse has often been voiced as a viable option, particularly for areas suffering from water scarcity. Such areas include remote arid areas, such as desert cities and arid coastal zones. However, issues related to consistency in the quality and quantity of generated greywater were listed as challenges hindering the adoption of greywater reuse. Thus, the objective of this study was to characterize the different greywater sources for variations in the quality and quantity of greywater in households in the city of Al Ain, UAE over a period of 3 months. Samples were collected from 10 Households and tested for the typical water quality parameters (pH, turbidity, COD, and TDS). In addition, a questionnaire was designed to get an estimate of the greywater flow in the different households. Results indicate that the average daily greywater production was around 88 L per person per day. Even though the results of the water quality analysis for light greywater sources (laundry, showers, and hand basins) exhibited high variability, it was still suitable for direct irrigation. The quantification of greywater flow and potential water savings indicated that greywater could be sufficient for onsite reuse in non-crop irrigation in some of the households.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


Author(s):  
Chalisa VEESOMMAI ◽  
Yasushi KIYOKI

The water quality analysis is one of the most important aspects of designing environmental systems. It is necessary to realize detection and classification processes and systems for water quality analysis. The important direction is to lead to uncomplicated understanding for public utilization. This paper presents the river Sensing Processing Actuation processes (rSPA) for determination and classification of multiple-water- parameters in Chaophraya river. According to rSPA processes of multiple-water-quality-parameters, we find the pollutants of conductivity, salinity and total dissolved solid (TDS), which are accumulated from upstream to downstream. In several spots of the river, we have analyzed water quality in a maximum value of pollutants in term of oxidation-reduction potential (ORP). The first range effect of parameter is to express high to very high effects in term of dissolved oxygen, second is to express intermediate to very high effect in term of conductivity, third is to express low to very high effect in term of total dissolved solid, fourth is to express completely safe to very high effect in term of turbidity and the final is to express completely safe for effect in term of salinity.


Author(s):  
Lina Rose ◽  
X. Anitha Mary ◽  
C. Karthik

Abstract Water consumed is stored in several water bodies in and around us, out of which dams accommodate a major portion of water. The quantity and quality monitoring of water in Dams is troublesome due to its large surface area and high depths. Though groundwater resources are the primary water source in India, Dams plays a vital role in water distribution and storage network. Central Water Commission in India has identified more than 5,000 dams of which a major portion is persistently consumed by the rural and urban population for drinking and irrigation. The water quality of these reservoirs is of serious concern as it would not only affect the socio-economic status of the nation but the aquatic systems as well. Water quality control and management are vital for delivering clean water supply to the common society. Because of their size, collecting, assessing, and managing a vast volume of water quality data is critical. Water quality data is primarily obtained through manual field sampling; however, real-time sensor monitoring is increasingly being used for more efficient data collection. The literature depicts that the methodsinvolving remote sensing and image processing of water quality analysis consume time, require sample collection at various depths, analysis of collected samples, and manual interpretations. The objective of this study is to propose a novel cost-effective method to monitor water quality devoid of considerable human intervention. The sensor-based online monitoring aids in assessing the sample with limited technology, at various depths of water in the dam to analyze turbidity which gives the major indication of pure water. The quality analysis of the dam water is worthy if the water is assessed at the distribution end before consumption. Hence, to enhance the water management system, other quality parameters like pH, conductivity, temperature are sensed and monitored in the distribution pipeline. The unstable pH can alter the chemical and microbiological aspects of water resulting in a variation of other water quality parameters Temperature variations affect the amount of dissolved oxygen in the water bodies which results in unstable quality parameters. The change in dissolved solvents and the ionic concentration alters the electrical conductivity of the water and the increased concentration of salts also results in turbidity. The data from all the sensors are processed by the microcontroller, transmitted, and displayed in a mobile application comprehensible to the layman.


2016 ◽  
Author(s):  
Eric Ian Larson ◽  
◽  
Matthew Aaron Wimmer ◽  
Carmen A. Nezat

2009 ◽  
Vol 89 (4) ◽  
pp. 201-224
Author(s):  
Danijela Obradovic ◽  
Dejan Filipovic

In a few decades backwards in the city of Kraljevo occur certain problems with water quality, as well as with water supply. Based on the analysis of the present environmental state, the authors identified certain influences on the quality of the surface and ground water. Considering significant quantity of water recourses on this territory, as well as its threatened quality, it is necessary to pay attention much more on the problem of the pollution and protection of the surface and ground water.


2017 ◽  
Vol 13 (2) ◽  
pp. 111-119
Author(s):  
Lela Uyara ◽  
Pieter Kunu ◽  
Silwanus M Talakua

The study aims to determine the quality of clean water in the villages of Wainitu, Batumerah, Amahusu and Halong by comparing the result of water quality analysis with water quality standard. Water quality analysis includes Physiscal, Chemical, and Microbiological parameters. This research uses descriptive method, this method describes systematics, accurate about facts and characteristic of the quality of clean water of each research location. The results showed that the source of clean water in the village of Batumerah did not meet the standard of clean water quality standards indicated by the number of E. coli and the high total coliform.  Keywords: standard quality of clean water, water quality, Wainitu, Batumerah, Amahusu and Halong villages   ABSTRAK Penelitian yang bertujuan untuk menetapkan kualitas air bersih di Desa Wainitu, Batumerah, Amahusu dan Halong, dengan membandingkan hasil analisis kualitas air dengan standar baku mutu air bersih. Analisis kualitas air meliputi parameter fisika, kimia dan mikrobiologi. Penelitian ini menggunakan metode deskriptif; metode ini menggambarkan sicara sistematis, akurat, fakta dan karakteristik mengenai kualitas air bersih di masing-masing lokasi penelitian. Hasil penelitian menunjukkan bahwa sumber air bersih di Desa Batumerah tidak memenuhi standar baku mutu air bersih yang ditunjukkan oleh jumlah E. coli dan total Koliform yang tinggi. Kata Kunci: baku mutu air bersih, Desa Wainitu, Batumerah, Amahusu dan Halong, kualitas air


2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters


Author(s):  
Cecilia Prudkin-Silva ◽  
Esteban Lanzarotti ◽  
Lucía Álvarez ◽  
María Belén Vallerga ◽  
Matías Factorovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document