EVALUATION OF S-WAVE AMPLIFICATION SPECTRUM USING MICROTREMORS

Author(s):  
Hayato Nishikawa ◽  
Tomiya Takatani

To evaluate the site effects above the engineering base rock with an S-wave velocity of 300m/s, microtremor measurements on the ground surface were conducted in Maizuru, Japan. An estimation method of S-wave amplification spectrum using the microtremor H/V spectral ratio was applied at the ground surface, estimating S-wave amplification spectrum without any ground information based on the microtremor measurement results. It was found that the evaluation of S-wave amplification spectrum needs a revision on the microtremor H/V spectral ratio, using some coefficients on the microtopography classification and the shape of the microtremor H/V spectral ratio.

1993 ◽  
Vol 83 (5) ◽  
pp. 1574-1594
Author(s):  
Javier Lermo ◽  
Francisco J. Chávez-García

Abstract The spectral ratio technique is a common useful way to estimate empirical transfer function to evaluates site effects in regions of moderate to high seismicity. The purpose of this paper is to show that it is possible to estimate empirical transfer function using spectral ratios between horizontal and vertical components of motion without a reference station. The technique, originally proposed by Nakamura to analyze Rayleigh waves in the microtremor records, is presented briefly and it is discussed why it may be applicable to study the intense S-wave part in earthquake records. Results are presented for three different cities in Mexico: Oaxaca, Oax., Acapulco, Gro., and Mexico City. These cities are very different by their geological and tectonic contexts and also by the very different epicentral distances to the main seismogenic zones affecting each city. Each time we compare the results of Nakamura's technique with standard spectral ratios. In all three cases the results are very encouraging. We conclude that, if site effects are caused by simple geology, a first estimate of dominant period and local amplification level can be obtained using records of only one station.


2016 ◽  
Vol 47 (3) ◽  
pp. 1081
Author(s):  
E. Bouranta ◽  
F. Vallianatos ◽  
N. J. Hatzopoulos ◽  
I. Papadopoulos ◽  
P. Gaganis

Mytilene is the capital of Lesvos, the eighth largest island in the Mediterranean Sea and the largest in the North Aegean. The region of North Aegean is a geotectonically complex area, because its geodynamic status is directly affected by the North Anatolian Fault Zone. In the present paper, microtremor data have been analyzedfor the city of Mytilene using Nakamura technique of Horizontal to Vertical Spectral Ratio (HVSR) to ascertain the structure in terms of the predominant frequency. 100 microtremor measurements have been performed in the city of Mytilene. At each point of microtremor measurement, the natural frequency and amplification factor have been determined. The predominant frequency varies from 0.4 Hz to 6.6 Hz. The amplification factor in 0.4-8.07 range has been obtained from the HVSR analysis. The results are presented in terms of maps, including the spatial variability of the predominant frequency and developed GIS database. The results of this study make it clear that the characteristics of microtremors depend on the type of soil deposits.


2020 ◽  
pp. 2150008
Author(s):  
Haizhong Zhang ◽  
Yan-Gang Zhao

In both seismic design and probabilistic seismic-hazard analyses, site effects are typically characterized as the ratio of the response spectral ordinate on the ground surface to that on the bedrock based on the scaling law borrowed from the Fourier spectral ordinate. Recent studies have shown that different from the Fourier spectral ratio (FSR), the response spectral ratio (RSR) does not purely reflect the site effects but also depends on the earthquake scenario even for linear analysis. However, previous studies are limited to theoretical analysis. This study statistically compares the two spectral ratios by analyzing many actual seismic ground motions recorded at nearby soil and rock sites. It is observed that the average RSR and FSR have similar overall shapes, and their maximum values occur at approximately the same period; however, the values around the peak are clearly different with FSRs consistently exceeding the RSRs. The RSR–FSR relationship depends on the earthquake scenario and the oscillator damping; their difference at periods longer than the site’s fundamental period decreases as the magnitude and epicentral distance increase, and the RSRs generally approach the FSRs as the oscillator damping decreases.


2020 ◽  
Vol 25 (3) ◽  
pp. 391-401
Author(s):  
Ahmed M. Meneisy ◽  
Mostafa Toni ◽  
Awad A. Omran

It is well known that the local geological characteristics in terms of topographic setting and the existence of soft sediments over bedrock may affect earthquake waves and cause seismic amplification. These effects are called “site effects”. Microtremors which provide an efficient practical tool for site effects estimation were recorded at 43 sites in Beni Suef City, Egypt. The recorded seismic signals were analyzed using the Horizontal-to-Vertical Spectral Ratio (HVSR) method. The targeted site parameters are the fundamental frequency ( f0) and the corresponding amplitude of seismic waves ( A0). Selected H/V curves with clear peak frequency have been inverted to infer the S-wave velocity profile of the underlying sediments. Information about subsurface sediments needed for the inversion process was extracted from available boreholes data. Moreover, the estimated values of f0 and A0 have been used for a preliminary calculation of the seismic vulnerability index ( Kg) which represents an indicator of soil liquefaction potentiality in the event of future earthquakes at the study area. The estimated H/V curves reveals significant variations in f0 and A0 parameters, reflecting variations in the soil characteristics (thickness and type) at the study area. The estimated values of f0 are (0.4–3.7 Hz), and commonly decrease from east to west. The A0 values vary from flat H/V curves (without any clear peak) at rock sites to 7.8 near to the Nile River and in the cultivated areas. The obtained velocity profiles could investigate S-wave structure down to 200 m depth. The estimated Kg varies from 10 to more than 50 μstrain/gal. The highest Kg values are noticed in the west and northwest in the study area were the soft sediments exist with considerable thickness, while the smallest Kg values are noticed in the south east where limestone and stiff soil occur near the ground surface.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


Author(s):  
Urip Nurwijayanto Prabowo ◽  
Akmal Ferdiyan ◽  
Ayu Fitri Amalia

Watukumpul is an area that is prone to landslides, so determining the soft layer thickness is very important to identify the landslide potential. The soft layer thickness can be estimated using microtremor signal measurements which analyzed using the Horizontal to Vertical Spectral Ratio (HVSR). In this study,we measured microtremor signal of 33location around Watukumpul, Pemalang, Central Java area to determine soft layer thickness. Micretremor signal was analyzed based on theHVSR method using Geopsy software and follow the standard of the Sesame Europan Project. The results of the HVSR method are the HVSR curve that fulfills the reliable curve standard. HVSR curve shows that the dominant frequency of soft layer ranges from 1.36 – 7.62 Hz and the amplification values ranges from 9.00 – 41.45. The soft layer thickness value in the study area ranges from 17.58 - 103.60 meters. The high landslide potential area are located at W7, W8, W18, W30 and W32 where has thin soft layer and high soil slope.


2020 ◽  
Vol 4 (3) ◽  
pp. 73-89
Author(s):  
Kukuh Dialosa ◽  
Rustadi Rustadi ◽  
Bagus Sapto Mulyatno ◽  
Cecep Sulaeman

Soil mechanical research has been done in Cilacap Regency using DSHA method and microtremor data. This study aims to analyze the local land response to earthquakes based on the dominant frequency parameters (f0), amplification factor (A0), wave velocity VS30 and seismic hazard analysis through deterministic approach. This research uses 193 microtremor measurement points using a short period TDS-303 type (3 component) seismometer. Microtremor data were analyzed using the Horizontal to Vertical Spectral Ratio (HVSR) method in geopsy software. DSHA analysis refers to the source of the Lembang Fault earthquake and Java Subduction zone for deterministic calculations. Based on the analysis of HVSR method, Cilacap Regency is located on land type 1 (frequency 0-1.33 Hz) and soil type 2 (frequency 1,33-5 Hz) according to Kanai Classification (1983), dominated amplification value 1,104 to 8,171 times, then Dominated by soil class E (VS30 value 183 m / s) and soil class D (183 m / s VS30 366 m / s) according to NEHRP Classification (2000). This indicates that Cilacap Regency has high vulnerability to earthquake disaster. Based on the estimated value of PGA calculation method of DSHA, from the calculation of earthquake source Subduction obtained Java PGA bedrock 0,045 g - 0,0671 g and PGA surface rock 0,1926 g - 0,4855 g and calculation of Lembang Fault obtained PGA bedrock 0, 09 g - 0.025 g and PGA surface rocks 0.017 g - 0.089 g. Based on risk map analysis (combination of dominant frequency analysis, amplification, susceptibility factor and ability factor), the highest risk areas are Kec. Adipala, Kasugihan, Binangun, Nusawungun, Cil. Middle, Cil. South, Cil. North, allegedly the soil layer constituent area is a layer of thick and soft sediments. While the low risk of Kec. Majenang and Dayeuh Luhur.


2020 ◽  
Vol 25 (1) ◽  
pp. 101-109
Author(s):  
Ruyun Tian ◽  
Liwei Ma ◽  
Xiaohua Zhou ◽  
Junqiu Wang ◽  
Jun Lin ◽  
...  

The soil-rock mixture sedimentary stratum is a compound with complex and loose topography, of which the structure is difficult to detect by the ordinary geophysical method. There is a need for a convenient, efficient and effective geophysical method to detect site effects in this area. This paper is an application of the S wave velocity profile inversion for the soil-rock mixture sedimentary stratum, using HVSR (Horizontal to Vertical Spectral Ratio) analysis of ambient noise by some three-component observations in the Chinese Loess Plateau. We carried out the measurement using three nested circular arrays and data recording systems with a spectrum expansion circuit. Inversion of the HVSR curves was performed by a three-layer model. Results of geological observation reveal that the upper part of the sedimentary stratum is Quaternary strata containing a large amount of humus and loess, the middle layer part is the stratum of the loose gravel and the under part is completely weathered granite with homogeneous lithology and fewer rocks. Interpretation results are consistent with previous drilling data, providing a valid geophysical basis for evaluating the stability of the soil erosion and designing a reasonable water and soil erosion control scheme.


Sign in / Sign up

Export Citation Format

Share Document