EXPERIMENTAL EVALUATION OF SOIL REINFORCEMENTS IN UNPAVED ROAD

Author(s):  
Nahla Salim

In this study, a series of 24 laboratory tests were conducted on a footing resting on crushed stone with 17.68 kN/m3 dry unit weight overlying sandy soils of two relative densities corresponding to (60% and 80%). The subbase layer is of crushed stone with a thickness of 5, 7.5 and 10 cm. Ten tests were conducted under static load with and without geogrid. All the other 14 model tests were carried out under harmonic load which was applied in a sequence determined prior (40% of static load). Tests were conducted at (2) Hz frequency according to the loading value. The process of the loading was continued until the number of cycles reached 104. The results indicated that, for static load and with the inclusion of the geogrid, as the thickness of the subbase layer increases, the percentage of increase in bearing capacity was reduced. In general, using geogrid reinforcement with subbase thickness of 7.5 and 5 cm causes an increase in bearing capacity approximately 1.5 to 2 times greater than for unreinforced respectively. This means that by using geogrid reinforcement, the thickness of subbase can be reduced which causes a reduction in construction cost.

2020 ◽  
Vol 10 (16) ◽  
pp. 5492
Author(s):  
Michał Baca ◽  
Włodzimierz Brząkała ◽  
Jarosław Rybak

This work examined a new method of bi-directional static load testing for piles, referencing the Osterberg test. Measurements were taken, on a laboratory scale, using six models of piles driven into a box filled with sand. This method allowed for separate measurements of pile base and pile shaft bearing capacities. Based on the results, the total pile bearing capacity and equivalent Q–s diagrams were estimated. The results obtained show that the structure of the equivalent curve according to Osterberg is a good approximation of the standard Q–s curve obtained from load tests, except for loads close to the limit of bearing capacity (those estimates are also complicated by the inapplicability and ambiguity of a definition of the notion of limit bearing capacity); the equivalent pile capacity in the Osterberg method represents, on average, about 80% of the capacity from standard tests.


2015 ◽  
Vol 773-774 ◽  
pp. 1518-1523 ◽  
Author(s):  
Aminaton Marto ◽  
Mohsen Oghabi ◽  
Nor Zurairahetty Mohd Yunus

Bearing capacity and settlement are two important parameters in geotechnical engineering. The bearing capacity of circular foundations on sandy soils is important to geotechnical practicing engineers. Design of foundations includes soil parameters and bearing capacity of foundation. This paper presents the results of laboratory experimental model tests of circular footings supported on sand deposit under static load. The finite element software Abaqus is used to compare the results. The effects of the relative density of the sand (30%, 50%, and 70%) and the diameter of circular footing (75 mm and 100 mm) are investigated. It can be concluded that the experimental test results fit quite well with the results of numerical method.


2015 ◽  
Vol 36 (2) ◽  
pp. 45-49 ◽  
Author(s):  
Zygmunt Meyer

Abstract Statistic load test is the most commonly used method for estimation of the bearing capacity of piles. From the test we obtain the series a values: load-settlement, Q–s curve. In practice, it is extremely difficult to reach the critical load of the pile when the settlement turns out of control. The existing methods that allow bearing capacity to be calculated give the value which is very often 1/10 of the critical load. The question arises if it is possible based upon short series of load, i.e., 0–0.4 critical load, to predict the critical value of the load, with accuracy which is sufficient for practical calculation. The paper presents a method how to calculate the critical load based upon short series of load in the static load tests.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 477-488
Author(s):  
Liuliu Zhang ◽  
Cheng Chang ◽  
Shuming Yang

Static load tests were carried out on three kinds of triangular girder trusses with different diameter wood dowels, and the effects of that on the structure of girder trusses were discussed. It was found that there was a good synergy between the wood dowels and the girder trusses. Among the triangular girder trusses with different diameters, the 16 mm diameters had the best energy dissipation performance increased by 184% and deformation resistance of 0.73 mm; the 20 mm diameters had the best stability performance, the better bearing capacity of 60.42 kN and deformation resistance of 0.82 mm. The bearing capacity of the double girder trusses was 2.06-2.25 times that of two single trusses, which had the ability to ‘one plus one is greater than two’.


2018 ◽  
Vol 4 (10) ◽  
pp. 2275 ◽  
Author(s):  
Romer D. Oyola-Guzmán ◽  
Rómulo Oyola-Morales

Unexpected failure of compacted soils was explained using design curves of the Rational Methodology for Compacted Geomaterial’s Density and Strength Analysis (RAMCODES).  Forensic geotechnical evaluation, applied to a compacted soil used at a construction site, demonstrated that the bearing capacity of the soil was influenced by the water content and the dry unit weight. At the construction site, the only criterion used for quality control of the compacted soil was the minimum compaction percentage; the maximum dry unit weight (achieved using the standard Proctor test) was used when the soil was compacted with light equipment, and the maximum dry unit weight (achieved using the modified Proctor test) was used when it was compacted with heavy equipment. After changing water content conditions, the soil compacted with heavy equipment and the soil compacted with light equipment exhibited changes in bearing capacity; the soil compacted with light equipment showed a failure, whereas the soil compacted with heavy equipment did not. The causes of failure were evaluated from samples of soil analyzed in the laboratory; analysis was performed using design curves obtained through a factorial experimental design. Our analysis revealed that the criterion of minimum compaction percentage was not adequate to determine the actual mechanical performance of the soil. We sought to determine why the soil compacted with light equipment did not satisfy the bearing capacity expected after compaction, and what other actions should performed at a construction site to avoid failure of soils compacted with light equipment. 


2020 ◽  
Vol 3 (3) ◽  
pp. 897
Author(s):  
Feric Antonius ◽  
Alfred Jonathan Susilo

ABSTRACTThe construction of high rise buildings requires a strong foundation. High rise building construction usually requires a deep foundation which requires a large cost. Therefore, shallow foundation can be used as an alternative to replace deep foundation. The main problem that arise is the low bearing capacity of the foundation which unable to carry the load. This research conducts is to find out how to increase the bearing capacity of a square footings with several reinforcement materials for high rise buildings. The analysis bearing capacity of shallow foundation is carried out manually using the Terzaghi method and the Meyerhof and Hanna method. The results of the analysis using these two methods show that soil reinforcement materials such as stone column, crushed stone, crushed limestone, construction and demolition can increase the bearing capacity of shallow foundations. The conclusions of this research with Terzaghi method obtained that the greater the value of the friction angle and unit weight of soil from the reinforcement materials, the bearing capacity of the foundation will be even greater, while the Meyerhof and Hanna method obtained that the stronger material does not always get the greatest value of bearing capacity because it depends on the type and consistency of the soil under the reinforcement layer.Keywords: bearing capacity; stone column; crushed stone; crushed limestone; construction and demolitionABSTRAKDalam perencanaan pembangunan seperti gedung bertingkat tentunya memerlukan sebuah fondasi yang kuat. Pembangunan konstruksi gedung bertingkat biasanya memerlukan fondasi dalam tetapi memerlukan biaya yang besar. Oleh karena itu, fondasi dangkal dapat digunakan sebagai alternatif untuk menggantikan fondasi dalam. Masalah utama yang timbul dari penggunaan fondasi dangkal untuk gedung bertingkat adalah daya dukung fondasi yang rendah sehingga tidak mampu memikul gaya luar. Penelitian ini dilakukan untuk mengetahui cara peningkatan daya dukung fondasi telapak persegi dengan beberapa material perkuatan tanah untuk gedung bertingkat. Analisis daya dukung fondasi dangkal dilakukan secara perhitungan manual menggunakan metode Terzaghi dan metode Meyerhof dan Hanna. Hasil analisis menggunakan kedua metode tersebut menunjukkan bahwa material perkuatan tanah yaitu stone column, crushed stone, crushed limestone dan construction and demolition yang digunakan dapat meningkatkan daya dukung fondasi dangkal. Kesimpulan dari penelitian ini antara lain menggunakan metode Terzaghi didapatkan bahwa semakin besar nilai sudut geser dalam dan berat jenis tanah dari material perkuatan yang digunakan maka nilai daya dukung fondasi akan semakin besar sedangkan metode Meyerhof dan Hanna didapatkan bahwa semakin kuat material belum tentu berpengaruh untuk mendapatkan nilai daya dukung yang paling besar karena dipengaruhi dengan jenis dan konsistensi tanah yang berada dibawah lapisan perkuatan tersebut.Kata kunci: daya dukung; stone column; crushed stone; crushed limestone; construction and demolition


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1890 ◽  
Author(s):  
Daehyeon Kim ◽  
Kyemoon Baek ◽  
Kyungho Park

This study aims to improve shafts with hexagonal joints so that they will not require welding or bolts in static load tests. In order to evaluate the bearing capacity of helical piles, two sites were selected to conduct pile installation for the field test and the pile load test. For the pile load test, a static pile load test and a dynamic pile load test were carried out, and torque was measured during pile installation in a field test to compare and analyze the expected bearing capacity and thus assess the feasibility of the method for estimating the bearing capacity. The field pile load test revealed that the bearing capacity of the gravity grout pile was the same or greater than 600 kN in the static pile load test in accordance with the AC 358 code. The non-grout pile showed a bearing capacity that was the same or smaller than 600 kN, suggesting that gravity grouting is required. Moreover, the field pile load test was used to establish the bearing capacity equation considering the torque in the pile installation, and a small number of samples were used to establish the equation, which can be used as basic data.


2020 ◽  
Author(s):  
Dinis Gardete ◽  
Rosa Luzia

The reuse and recycling rates for plastics are still below desirable values. The valorisation of plastic wastes that presently end in landfills or is incinerated can help to mitigate this environmental problem. There have been studies in soil improvement using plastic waste. Two  types of plastic waste were used to assess their ability to improve soil properties for embankment construction and pavement layers. The selected plastic wastes are made from shredded package labels and ground bottles. The main properties of the soils were characterized. Three percentages of plastic waste were used, and the bearing capacity of the soil determined using CBR test (California Bearing Ratio). The results from the tests show that plastic waste stabilization leads to an increase in bearing capacity, expressed in CBR values, for low contents of plastic waste. This increase was more effective for high penetration values. Reduction in the bearing capacity was observed for higher plastic waste contents. Maximum dry unit weight decreased with increasing plastic waste content, whereas expansion increased with increasing plastic waste content. Keywords: Soil stabilization, Plastic waste, CBR test, Compaction, Earthworks


Sign in / Sign up

Export Citation Format

Share Document