scholarly journals Experimental Study on Soils Stabilized with Two Types of Plastic Waste

2020 ◽  
Author(s):  
Dinis Gardete ◽  
Rosa Luzia

The reuse and recycling rates for plastics are still below desirable values. The valorisation of plastic wastes that presently end in landfills or is incinerated can help to mitigate this environmental problem. There have been studies in soil improvement using plastic waste. Two  types of plastic waste were used to assess their ability to improve soil properties for embankment construction and pavement layers. The selected plastic wastes are made from shredded package labels and ground bottles. The main properties of the soils were characterized. Three percentages of plastic waste were used, and the bearing capacity of the soil determined using CBR test (California Bearing Ratio). The results from the tests show that plastic waste stabilization leads to an increase in bearing capacity, expressed in CBR values, for low contents of plastic waste. This increase was more effective for high penetration values. Reduction in the bearing capacity was observed for higher plastic waste contents. Maximum dry unit weight decreased with increasing plastic waste content, whereas expansion increased with increasing plastic waste content. Keywords: Soil stabilization, Plastic waste, CBR test, Compaction, Earthworks

2016 ◽  
Vol 723 ◽  
pp. 795-800 ◽  
Author(s):  
Habib Rasouli ◽  
Hana Takhtfirouzeh ◽  
Abbasali Taghavi Ghalesari ◽  
Roya Hemati

In order to attain a satisfactory level of safety and stability in the construction of structures on weak soil, one of the best solutions can be soil improvement. The addition of a certain percentage of some materials to the soil may compensate for its deficiency. Cement is a suitable material to be used for stabilization and modification of a wide variety of soils. By using this material, the engineering properties of soil can be improved. In this study, the effect of soil stabilization with cement on the bearing capacity of a shallow foundation was studied by employing finite element method. The material properties were obtained by conducting experimental tests on cement-stabilized sand. Cement varying from 2% to 8% by soil dry weight was added for stabilization. The effect of reinforced soil block dimensions, foundation width and cement content were investigated. From the results, it can be figured out that by stabilizing the soil below the foundation to certain dimensions with the necessary cement content, the bearing capacity of the foundation will increase to an acceptable level.


Author(s):  
M Zaki ◽  
Wardani SPR ◽  
Muhrozi Muhrozi

<p><em>Construction on soft soil, often creates problems. The Semarang North Ring Bridge and Kali Jajar Bridge are the Recent soft Marine Alluvium zones located in the Pantura area which have very soft soil characteristics with a depth of more than -30.0 meters this has resulted in a very large settlement due to very small grains, flood, rob, pore water pressure increases so that the shear strength of the soil will be small, the compression is large and the permeability coefficient is small so that if the construction load exceeds the critical bearing capacity, the damage to the foundation soil will occur. To get the increase in soil bearing capacity, it can be achieved by changing the properties of the soil from the shear angle (</em>f<em>), cohesion (c) and unit weight (</em>g<em>). The settlement can be reduced by increasing the cavity density from the compression of the soil particles (Wesley, 1977). Soil improvement takes a long time, aiming to increase shear resistance so that it requires a fast time in this case is to use Pre-Fabricated Vertical Drain (Bowles 1981). The results of the analysis of the pattern of decline and the effectiveness of the use of PVD (pre-fabricated vertical drain) at the Oprit Bridge in the two research locations have the same decrease in the range of the same heap height at (H = 4 meters) there is a decrease of 117.53 cm at 64 months on the bridge. Kali Jajar (STA. 3 + 200) and there was a decrease of 268.94 cm at 37 months at the Semarang North Ring Bridge</em></p>


2021 ◽  
Vol 5 (2) ◽  
pp. 60-73
Author(s):  
Ahmad Ravi ◽  
Hurul 'Ain ◽  
Betti Ses Eka Polonia ◽  
M. Hanif Faisal

Ketapang and Kayong Utara Regency have road construction that often suffers damage before the planned life age caused by the behavior of expansive clay. The subgrade is a fundamental structure in building road construction because the subgrade will support traffic loads or construction loads. The strength and durability of the pavement structure road will depend on the properties and bearing capacity of the subgrade. Practically soil stabilization is a reinforcement engineering against foundation or subgrade by using mixed materials. Therefore, different soil improvement variations are needed. Based on the test result, the CBR value of Sukadana initially gets a 2.95% point. The CBR value for the 6% and 10 % mixture, respectively, gets 17.14% and 25.02%. The CBR value of Sungai Melayu Rayak originally get 4.65% point. Then, for the 6% and 10% mixture, the CBR values increased by 13.78% and 18%. The value of the bearing capacity of the highway soil construction can be know from the results of CBR testing on each variation. The CBR also can measure the strength of the soil. The addition of cement to the earth tends to increase the bearing capacity of the ground. It is because cement can function as a binder between soil particles with chemical compounds contained in cement.


2018 ◽  
Vol 4 (10) ◽  
pp. 2275 ◽  
Author(s):  
Romer D. Oyola-Guzmán ◽  
Rómulo Oyola-Morales

Unexpected failure of compacted soils was explained using design curves of the Rational Methodology for Compacted Geomaterial’s Density and Strength Analysis (RAMCODES).  Forensic geotechnical evaluation, applied to a compacted soil used at a construction site, demonstrated that the bearing capacity of the soil was influenced by the water content and the dry unit weight. At the construction site, the only criterion used for quality control of the compacted soil was the minimum compaction percentage; the maximum dry unit weight (achieved using the standard Proctor test) was used when the soil was compacted with light equipment, and the maximum dry unit weight (achieved using the modified Proctor test) was used when it was compacted with heavy equipment. After changing water content conditions, the soil compacted with heavy equipment and the soil compacted with light equipment exhibited changes in bearing capacity; the soil compacted with light equipment showed a failure, whereas the soil compacted with heavy equipment did not. The causes of failure were evaluated from samples of soil analyzed in the laboratory; analysis was performed using design curves obtained through a factorial experimental design. Our analysis revealed that the criterion of minimum compaction percentage was not adequate to determine the actual mechanical performance of the soil. We sought to determine why the soil compacted with light equipment did not satisfy the bearing capacity expected after compaction, and what other actions should performed at a construction site to avoid failure of soils compacted with light equipment. 


Author(s):  
Tanna Manohar ◽  
Jyoti Prakash Giri

Soils that expand and contract unexpectedly are often described in terms of their permeability and poor load transfer mechanism. As a result of these qualities, the rate of failure mechanisms such as excessive settlement and subgrade failures attains at a very rapid pace, and the expansive soils are defined as more sensitive than other types of soil. Constructions based on this sort of soil are therefore challenging for an Engineer to complete. Growing population has led to an uncontrolled increase in plastic waste creation, and the disposal of the plastic waste has become a significant issue for all countries. As a result, road construction industry has shown a great deal of interest in utilising this waste and researchers have attempted to produce plastic wastes in soil stabilization as a strengthening agent. The focus of this study is to identify ways to make use of plastic wastes in geotechnical applications on a large scale. KEYWORDS: Soil stabilization, Plastic waste, Unconfined compressive strength, Static tensile strength


Author(s):  
Nahla Salim

In this study, a series of 24 laboratory tests were conducted on a footing resting on crushed stone with 17.68 kN/m3 dry unit weight overlying sandy soils of two relative densities corresponding to (60% and 80%). The subbase layer is of crushed stone with a thickness of 5, 7.5 and 10 cm. Ten tests were conducted under static load with and without geogrid. All the other 14 model tests were carried out under harmonic load which was applied in a sequence determined prior (40% of static load). Tests were conducted at (2) Hz frequency according to the loading value. The process of the loading was continued until the number of cycles reached 104. The results indicated that, for static load and with the inclusion of the geogrid, as the thickness of the subbase layer increases, the percentage of increase in bearing capacity was reduced. In general, using geogrid reinforcement with subbase thickness of 7.5 and 5 cm causes an increase in bearing capacity approximately 1.5 to 2 times greater than for unreinforced respectively. This means that by using geogrid reinforcement, the thickness of subbase can be reduced which causes a reduction in construction cost.


2021 ◽  
Vol 4 (4) ◽  
pp. 867
Author(s):  
Aldo Febrian ◽  
Aniek Prihatiningsih

Waste is one of the problems in Indonesia. Based on the Ministry of the Environment, each person produces an average of 0.8 kg of waste per day. The average waste per person will increase in line with the increase in people's welfare and lifestyle. Assuming 220 million Indonesians, waste reaches 176,000 tons per day. Accompanied by increasing population growth, the need for infrastructure development on land is increasing. Soils that is often used for construction land is organic soil. It has low soil bearing capacity values and soil improvement methods are commonly used. The general method usually is to mix the soil with better bearing capacity. To minimize costs, a physical stabilization system is carried out that can use soil improvement methods with waste. This can deal with 2 problems at once, where there is the use of certain types of waste and also the planning of organic soil stabilization with small carrying capacity. By doing a triaxial test on organic soil by mixing 4 different types of waste, it shows that the best waste mixture that can affect the bearing capacity of the soil in sequence is coconut husk, tile fragments, construction demolition debris, and chicken egg shells.    ABSTRAKLimbah merupakan salah satu permasalahan di Indonesia, Berdasarkan informasi Kementerian lingkungan Hidup, setiap orang menghasilkan rata-rata 0,8 kg sampah per hari. Rata-rata limbah per orang akan meningkat sejalan dengan meningkatnya kesejahteraan dan gaya hidup masyarakat. Dengan asumsi 220 juta penduduk Indonesia, limbah mencapai 176.000 ton per hari. Diiringi dengan peningkatan pertumbuhan penduduk, maka kebutuhan pembangunan infrastruktur di lahan tanah semakin bertambah. Salah satu tanah yang sering dipakai untuk lahan konstruksi adalah tanah organik. Tanah organik memiliki nilai daya dukung tanah yang rendah dan biasa dilakukan metode perbaikan tanah. Metode umum yang biasa dilakukan adalah dengan melakukan pencampuran tanah dengan daya dukung yang lebih baik. Untuk memperkecil biaya maka dilakukannya sistem stabilisasi fisik yang bisa menggunakan metode perbaikan tanah dengan limbah. Hal ini bisa menangani 2 masalah sekaligus, dimana adanya pemanfaatan dari jenis limbah tertentu dan juga perencanaan stabilisasi tanah organik dengan daya dukung kecil. Dengan melakukin uji triaksial pada tanah organik dengan mencampurkan 4 jenis limbah berbeda menunjukan bahwa campuran limbah terbaik yang bisa mempengaruhi daya dukung tanah secara berurutan adalah sabut kelapa, pecahan genteng, puing pembongkaran konstruksi, dan cangkang telur ayam.


2021 ◽  
Vol 26 (4) ◽  
pp. 167-178
Author(s):  
A.N. Mohammed ◽  
A.A. Khalil

Abstract The current study aims to investigate the effects of swell pressure on the bearing capacity of swelling soil. A model and some laboratory tests have been created to investigate the swell pressure effect on the bearing capacity variation of soil swelling due to swelling pressure. The influence of varying water content w/c and dry unit weight (γ d ) on the shear strength and swelling pressure was studied. The soil has been taken from Diwan Residential Compound-Mosul. It is classified as highly swelling soil. The swell pressure of soils at their natural water content reached 385 kN / m2 . Experiment results show that the parameters of shear resistance decreased with the w/c increase at the constant value of (γ d ), increased with the (γd ) increase when the w/c was constant. Results show that the swelling pressure decreased with the w/c increase, while it increased with the (γ d ) increase. Also, the results obtained using was model show that the resistance of bearing capacity of pre-saturated selected soil was 196 kN / m 2, while the bearing capacity was 620kN / m 2 when taking into account in the generation of swelling pressure.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


Sign in / Sign up

Export Citation Format

Share Document