scholarly journals Electrical and Structural properties of Copper Oxide (CuO) thin films on Plastic substrate deposited by spray pyrolysis technique

2019 ◽  
Vol 7 (2) ◽  
pp. 14-18 ◽  
Author(s):  
Mohammad G. Faraj ◽  
Askander K. Kaka ◽  
Halo D. Omar

In this paper, copper oxide (CuO) thin films were deposited on polyimide (PI) Plastic substrates with spray pyrolysis technique with different temperatures (i.e. 250–300 °C). All the deposited films were characterized by X-ray diffraction (XRD) and Hall Effect measurements for the Structural and electrical properties. Effects of substrate temperature on the structural and electrical characteristics of the films were studied. The X-ray diffraction patterns’ results reveal that the all of CuO films have a face centered cubic structure. The crystallite grain size was calculated using Scherrer formula and it is found that the substrate temperature (300 0C) has maximum crystallite grain size (81.2 nm). Hall Effect measurements showed that all the films are of p-type conductivity. Depending on the substrate temperature, Hall measurement showed that the electrical resistivity and the carrier concentration varied in the range 77.4 Ω.cm to 52.7 Ω.cm and  6.3 x1015 cm-3 to  10.1 x1015 cm-3.

2012 ◽  
Vol 626 ◽  
pp. 672-676
Author(s):  
Boon Hoong Ong ◽  
Heng Choy Lee ◽  
Sharifah Bee Abdul Hamid

Nanostructured SnO2 thin films were deposited on glass substrate using chemical spray pyrolysis technique. Three influent synthesis parameters, namely (i) the precursor concentration (0.2M and 0.5M), (ii) the substrate temperature (250°C and 350°C) and (iii) doping with zinc (Zn) were investigated in term of their effects on the morphology and structure of SnO2 thin films. These films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectrometry (EDX) techniques. The grain size of the films was observed to increase as the concentration of the precursors is increased. Substrate temperature is proved to be crucial in determining the crystallinity of the films as the films are reported to grow at temperature above 270°C. Besides, the addition of dopant was found to reduce the grain size of the film.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-12
Author(s):  
S.P. Soundararajan ◽  
M Murugan ◽  
K Mohanraj ◽  
Babu Balraj ◽  
Tamiloli Devendhiran

In this work the copper oxide thin films have been coated using Jet nebulizer spray pyrolysis technique. The prepared CuO thin films were characterized by various techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy dispersive X-ray spectroscopy (EDX) techniques, in order to study its crystalline nature, particle size and the band gap respectively.


2021 ◽  
Author(s):  
Fatemeh Davari ◽  
Mohammad Reza Fadavieslam

Abstract In this study, the pure and Cu doped CdO thin films with various doping concentrations (0 to 5 at.%) were deposited on soda-lime glass substrates, using the chemical spray pyrolysis technique. The effects of Cu doping on the structural, optical, and electrical properties of thin films were, then, investigated. The films were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy equipped with an energy dispersive x-ray analyzer (FESEM-EDX), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and electrical resistance; van der Pauw techniques were also used to measure the Hall effect. X-ray diffraction studies showed that the thin films were polycrystalline only with cadmium oxide phase with the cubic face-centered crystal structure and the preferred orientations were along (111), (200), (220), (311), and (311) planes. The FE-SEM and AFM images also showed that with an increase in Cu doping levels, the grain size and surface roughness of the thin films decreased from 472 to 38 nm and from 163 to 54 nm, respectively. The expected element compositions were confirmed by EDX. The optical bandgap of the thin films ranged from 2.42 to 2.56 eV, and as Cu dopant increased, so, too, the optical bandgap. As the Cu doping concentration increased from 0 to 5 (at.%), the electrical resistivity and Seebeck coefficient were found to increase from 3.74⋅10− 4 to 8.77⋅10− 3 Ω.cm and 8.28⋅10− 6 to 2.52⋅10− 5 v/k (at 100 Co temperature difference), respectively; the carrier concentration and carrier mobility were also found to decrease from 3.24⋅1020 to 1.76⋅1020 cm− 3 and from 55.5 to 4.05 cm2/v.s, respectively. The Hall effect and thermoelectric studies revealed that the films exhibited an n-type conductivity.


1996 ◽  
Vol 441 ◽  
Author(s):  
D. R. Acosta ◽  
E. Zironi ◽  
W. Estrada ◽  
E. Montoya

AbstractFluorine doped tin oxide thin films were prepared from solutions with high fluorine contents using the spray pyrolysis technique; the resulting films were studied by electron and X-ray diffraction methods; the resonant nuclear reaction (RNR) method was used to determine the final concentration of fluorine atoms in our films for different doping levels. Also, electrical and optical properties of SnO2:F films were measured and correlated with deposition and structural parameters obtained from X-Ray diffraction and electron microscopy studies.


2019 ◽  
Vol 397 ◽  
pp. 81-87 ◽  
Author(s):  
Farid Khediri ◽  
Abdelkader Hafdallah ◽  
Mouna Bouhelal

In this work Zinc oxide thin films prepared by spray pyrolysis technique. A set of ZnO thin films were deposited with various deposition times, on glass substrate at 350 °C. The precursor solution is formed with zinc acetate in distilled methanol with 0.1 molarity. The deposition time was ranged from 2 to 8 min. The structural and optical properties of those films were examined by X-ray diffraction (XRD) and ultraviolet-visible spectrometer (UV). X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane when the grain size varied between 9.66 and 16.67nm. ZnO thin films were highly transparent in the visible with the maximum transmittance of 85% and the optical band gap was found between 3.25 and 3.28 eV.


2019 ◽  
Vol 253 ◽  
pp. 03002 ◽  
Author(s):  
Youcef Bellal ◽  
Antar Bouhank ◽  
Hacene Serrar ◽  
Tunç Tüken ◽  
Gökmen Sığırcık

A simple and low-cost procedure (spray pyrolysis) was used to elaborate a copper oxide thin films on ordinary glass substrates. A copper nitrate was used and dissolved in two different solutions (Water, Methanol) S1 and S2 respectively in order to obtain an equal concentration; CS1,S2=0.5M. The spray pyrolysis deposition made at fixed temperature T=500°C and different volumes of S1 or S2 on the glass substrates. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrophotometry were used to determinate the structural, morphological and optical properties of CuO thin films. The X-ray diffraction patterns confirm the presence of the polycrystalline phase of CuO as monoclinic crystal structure with preferential orientation along (110), (002), (111), (200) and (020). Their optical band gaps ranged from 3.95 to 4.02eV for thin films made with S1, and from 1.6 to 1.95eV for thin films made with S2 with a high absorbency in the visible region, which is in agreement with the values of the literature.


2008 ◽  
Vol 86 (2) ◽  
pp. 379-382 ◽  
Author(s):  
S M Rozati

ZnO:Al(ZAO) films with various amount of solution, in the range 10–120 mL, were prepared on a glass substrate. Deposition was carried out using a spray method, and the substrate temperature was held at 500 °C. It was found that increasing the amount of solution causes the ZnO:Al thin films to exhibit a strong orientation along (002). The variation in the structural properties due to variation in the volume of solution was investigated by means of X-ray diffraction. The lowest sheet resistance obtained was 40 Ω/cm2 for a 120 mL solution. PACS Nos.: 73.61.–r, 78.20.–e


2017 ◽  
Vol 267 ◽  
pp. 3-6 ◽  
Author(s):  
Laura Rozenberga-Voska ◽  
Jānis Grabis

TiO2 and silver doped TiO2 thin films were prepared by spray pyrolysis technique and their photocatalytic activity were determined. Titanium(IV) isopropoxide solution or its mixture with silver nitrate were used as precursors. As-prepared at 300 °C films were X-ray amorphous. Calcination of the films at 500 °C for 5 – 6 hours allowed to obtain partially crystalline anatase films with uniform grain size in the range of 80 – 150 nm. Degradation degree of MB water solution by using TiO2 and TiO2/Ag photocatalysts under UV irradiation reached 60 and 70 % respectively.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 727-728 ◽  
pp. 691-696 ◽  
Author(s):  
Tiago Falcade ◽  
Giselle Barbosa de Oliveira ◽  
Diego Pereira Tarragó ◽  
Vânia Caldas de Sousa ◽  
Célia de Fraga Malfatti

Many studies have been reported in the literature related to YSZ films deposited on dense substrate or applied directly on the SOFC anode. However, there are not a lot of studies about the YSZ deposition on the cathode. The present work aims to obtain yttria-stabilized zirconia (YSZ), using the spray pyrolysis technique, for their application as electrolyte in solid oxide fuel cells (SOFC). The films were obtained from a precursor solution containing zirconium and yttrium salts, dissolved in ethanol and propylene glycol (1:1), this solution was sprayed onto a heated LSM porous substrate. The substrate temperature was varied in order to obtain dense and homogeneous films. After deposition, the films were heat treated, aiming to crystallize and stabilize the zirconia cubic phase. The films were characterized by Scanning Electron Microscopy (SEM), thermal analysis, X-ray diffraction and Fourier transform Infrared Spectroscopy (FT-IR).


Sign in / Sign up

Export Citation Format

Share Document